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Abstract

We present a survey of the research concerning ex-
planation and justification in the Machine Learning
literature and several adjacent fields. Within Ma-
chine Learning, we differentiate between two main
branches of current research: interpretable models,
and prediction interpretation and justification.

1 Introduction

A key component of an artificially intelligent system is the
ability to explain the decisions, recommendations, predic-
tions or actions made by it and the process through which
they are made. Explanation is closely related to the concept of
interpretability: systems are interpretable if their operations
can be understood by a human, either through introspection
or through a produced explanation. In the case of machine
learning models, explanation is often a difficult task since
most models are not readily interpretable. A related concept
is justification: intuitively, a justification explains why a deci-
sion is a good one, but it may or may not do so by explaining
exactly how it was made. Unlike introspective explanations,
justifications can be produced for non-interpretable systems.

Explanation has been shown to be important for user ac-
ceptance and satisfaction in a number of studies. In one early
study, physicians rated the ability to explain decisions as the
most highly desirable feature of a decision-assisting system
[Teach and Shortliffe, 1981]. [Ye and Johnson, 1995] experi-
mented with three types of explanations for an expert system
- trace, justification and strategy - and found that explanations
in general and justifications in particular make the generated
advice more acceptable to users, and that justification (de-
fined as showing the rationale behind each step in the deci-
sion) was the most effective type of explanation in changing
users’ attitudes towards the system. Later studies that empir-
ically tested the importance of explanation to users, in vari-
ous fields, consistently showed that explanations significantly
increase users’ confidence and trust [Herlocker et al., 2000;
Sinha and Swearingen, 2002; Bilgic and Mooney, 2005;
Symeonidis et al., 2009] as well as their ability to correctly
assess whether a prediction is accurate [Kim et al., 2016;
Gkatzia et al., 2016; Biran and McKeown, 2017].

2 History and Adjacent Fields
Work on producing explanations comes from multiple fields.
In this section, we focus on historical background and current
work in fields adjacent to machine learning.

2.1 Expert Systems and Bayesian Networks
Historically, explanations first appeared in the context of
rule-based expert systems, and were mostly treated as a sys-
tems design task (i.e., the task of designing a system capa-
ble of producing drill-down into its decisions). The need
for explaining the decisions of expert systems was discussed
as early as the 1970’s [Shortliffe and Buchanan, 1975].
[Swartout, 1983] described a framework for creating expert
systems with explanation capabilities, and was one of the first
to stress the importance of explanations that are not merely
traces, but also contain justifications. [Swartout et al., 1991]
is a later example of such a framework. Both were exclusively
for rule-based systems and relied on a domain-specific tax-
onomic knowledge base and a separate strategic knowledge
base. [Barzilay et al., 1998] further separated the knowledge
into three layers, adding the communication layer to the pre-
viously described domain and strategic layers. Separating the
communication layer from the rest of the system was intended
to allow a communication expert to create solutions that were
independent of the specific system and domain.

In some domains probabilistic decision-making systems,
often based on Bayesian Networks (BN), are still referred
to as expert systems and regarded as successors of earlier
rule-based systems. The (scarce) work on explanation for
these BN systems self-describes as expert systems explana-
tion. [Lacave and Dı́ez, 2002] present a survey of methods of
explanation for Bayesian networks and an excellent analysis
of the methods in terms of several properties of explanation.
Of particular interest is their classification of the focus of ex-
planation into an explanation of the reasoning, the model, and
the evidence for the decision. Most work on explanation in
Bayesian networks has been within the narrow context of a
particular system, and relies on producing canned text show-
ing the actual posterior probabilities of each node and pro-
viding no explanation for what the nodes themselves symbol-
ize, assuming that their names are enough (individual nodes
are often symptoms, in the medical domain, or physical evi-
dence, e.g. “valve open”, in other domains) [Druzdzel, 1996;
Haddawy et al., 1997; Yap et al., 2008].



2.2 Recommender Systems
Recommender systems are online services that serve a large
number of users and provide individualized recommenda-
tions for media or products. It is usually desirable to pro-
duce a short and intuitive justification to help the users decide
whether to follow the recommendation or not.

[Herlocker et al., 2000] conducted an experiment measur-
ing user satisfaction with a variety of justification types for a
collaborative filtering (neighbor-based) movie recommenda-
tion system. They found that the most satisfying were simple
and conclusive methods, such as stating the neighbors’ rat-
ings or showing one strong feature like a favorite actor. Jus-
tifications using ML concepts such as model confidence and
complex justifications such as a full neighbor graph scored
significantly lower. Regardless of type, 86% of users wanted
the justifications they were shown added to the system. Other
studies from the early 2000’s have also shown that users
are overwhelmingly more satisfied with systems that contain
some form of justification [Sinha and Swearingen, 2002].

[Symeonidis et al., 2009] presented a style of justification
that focused on the most important feature along with the
user’s past history with regards to that feature. A user study
showed that this justification style was significantly more sat-
isfying to users than previous methods. [Papadimitriou et al.,
2012] defined a classification of recommender system expla-
nations into three types: those based on previous items chosen
by the user, those based on choices of similar users, and those
based on features. They also defined a hybrid type which
combines two or more of the above, and following a user
study concluded that feature-based explanations were the best
of the three core types, and that hybrid explanations were best
overall. [Bilgic and Mooney, 2005] noted that previous stud-
ies have often evaluated the persuasiveness of the justifica-
tion and not its justifiability. Their experiments showed that
for justifiability, feature-based justifications were superior to
neighbor-based and user-history-based ones.

2.3 Other adjacent Fields
Generating explanations for users has also been explored in
constraint programming, specifically for problems where the
user may have an interactive role in solving the problem and
therefore needs to understand why certain choices were made.
In [Freuder et al., 2001] and [Wallace and Freuder, 2001] the
authors explored a method of presenting explanations for any
assignment decision made by their program. An assignment
can be explained by identifying a set of previous assignments
that form a sufficient basis to justify the current one. Apply-
ing this at each subsequent assignment step forms what the
authors call an explanation tree.

Context-aware systems are those that are capable of sens-
ing environmental changes and responding to them. Some
work has been done on providing users with explanations for
the behavior of these systems. [Tullio et al., 2007] studied
mental models that users developed of a system for predict-
ing their managers’ interruptibility. However, they concluded
that the low level feature contributions that they presented to
users were only moderately helpful in improving users under-
standing of the system, and recommended using higher level
concepts instead. [Lim and Dey, 2010] developed a toolkit for

use in context-aware applications that provides eight types of
explanation for four of the most common model types (rules,
decision trees, naı̈ve Bayes and HMMs).

There has been some work on explanation of Markov De-
cision Processes (MDPs). In the context of a particular state
in a MDP, it is sometimes desirable to explain to a user what
is the best current course of action and why. [Elizalde et al.,
2007] describe an explanation system that assists plant oper-
ators in executing necessary operations; [Khan et al., 2009]
explore the minimal explanation sufficient for tasks such as
picking the next course in a college curriculum; [Dodson et
al., 2011] propose a dialog system, instead of a single fixed
explanation, which allows the user to argue and ask questions.

The case-based reasoning community has also explored
explanation of probabilistic systems. One example is [Nugent
et al., 2009] who proposed a case-based method of explana-
tion for decision support systems, where alternative samples
are selected and the explanation focuses on how they differ
(if the decision is different) or their similarities (otherwise).

Causal discovery is concerned with determining the direc-
tion of causality between variables in a model, which can help
explain the behavior of the model. [Hoyer et al., 2009] ex-
ploited both non-linearity and non-Gaussianity of real data to
identify causality between variables, even in the presence of
additive noise. Demonstrating causal relationships is useful
for justifying predictions based on these models to users.

In forensic science, [Vlek et al., 2016] explained legal
cases by combining Bayesian networks with a narrative idiom
they call a scenario, taking statistical evidence into account
while also maintaining a narrative framework which helps a
judge or jury understand the assumptions being made and the
relationships among them. This allows insight into the struc-
ture of the statistical model, which is crucial for humans to
make an informed decision in a legal case. [Timmer et al.,
2017] used a somewhat similar approach to generate explana-
tions for Bayesian networks in legal cases. Their work relies
on defining a support graph directed toward the variable of
interest, then using it to construct an argument.

Interpretability has also been studied in the context of com-
municating agents. [Lazaridou et al., 2017] experimented
with neural agents which learn to communicate with each
other about images. They then leverage a human-supervised
task to ground the learned communication in a way that
would be understandable to humans. [Andreas et al., 2017]
also studied messages passed between agents in systems with
learned deep communicating policies. They developed a
strategy for translating these messages into natural language
based on the underlying beliefs implied by messages. This is
similar to understanding the beliefs implied by any model.

A field that is particularly closely related to explanation is
Natural Language Generation (NLG). Much of the work dis-
cussed in this survey uses NLG (of varying sophistication) to
produce explanations. In addition to explaining ML and other
AI systems, however, there has been work on explanations of
other kinds. For example, [Pace and Rosner, 2014] produce
explanations of user interactions with a software system, in-
tended for administrators, while [Gkatzia et al., 2016] explain
how a weather forecast was produced and show that it helps
readers decide whether or not to believe the forecast.



Other related work includes [McGuinness and Borgida,
1995], who proposed generating explanations as a debugging
tool for the developers and users of a Description Logic-based
system. They first break down inference rules into atomic de-
scriptions; corresponding atomic explanations are then cre-
ated using subsumption rules, and chained to form proofs
supporting the system’s conclusions.

2.4 Theoretical Work
There has also been some theoretical work on explanation.
[Chajewska and Halpern, 1997] proposed a formal definition
of explanation in general probabilistic systems, after exam-
ining two contemporary ideas and finding them incomplete.
In expert systems, [Johnson and Johnson, 1993] presented a
short survey of accounts of explanation in philosophy, psy-
chology and cognitive science and found that they fall into
three categories: associations between antecedent and con-
sequent; contrasts and differences; and causal mechanisms.
In recommender systems, [Yetim, 2008] proposed a frame-
work of justifications which uses existing models of argument
to enumerate the components of a justification and provide a
taxonomy of justification types. [Corfield, 2010] aims to for-
malize justifications for the accuracy of ML models by clas-
sifying them into four types of reasonings, two based on ab-
solute performance and two rooted in Bayesian ideas.

More recently, [Doshi-Velez and Kim, 2017] considered
how to evaluate human interpretability of machine learning
models. They proposed a taxonomy of three approaches:
application-grounded, which judges explanations based on
how much they assist humans in performing a real task;
human-grounded, which judges explanations based on hu-
man preference or ability to reason about a model from the
explanation; and functionally-grounded, which judges expla-
nations without human input, based on some formal proxy
for interpretability. For this third approach, they hypothe-
sized that matrix factorization of result data (quantized by
domain and method) may be useful for identifying common
latent factors that influence interpretability.

3 Machine Learning
In the machine learning literature, early work on explanation
often focused on producing visualizations of the prediction in
order to assist machine learning experts in evaluating the cor-
rectness of the model. One very common visualization tech-
nique is nomograms. It was first applied to logistic regression
models by [Lubsen et al., 1978], and later to Naive Bayes
[Možina et al., 2004], SVM [Jakulin et al., 2005] and other
models. [Szafron et al., 2003] proposed a visualization-based
explanation framework for Naive Bayes classifiers.

More recently, visualization techniques have focused on vi-
sualizing the hidden states of neural models [Tzeng and Ma,
2005], most notably of Convolutional Neural Nets (CNNs) in
image classification [Simonyan et al., 2013; Zeiler and Fer-
gus, 2013] and of Recurrent Neural Nets (RNNs) in Natu-
ral Language Processing (NLP) applications [Karpathy et al.,
2015; Li et al., 2016; Strobelt et al., 2016].

Beyond visualization, research has focused on two broad
approaches to explanation. The first is prediction interpre-
tation and justification, where a (usually non-interpretable)

model and prediction are given, and a justification for the pre-
diction must be produced. The second is interpretable mod-
els, which aims to devise models that are intrinsically inter-
pretable and can be explained through reasoning.

3.1 Prediction Interpretation and Justification
This approach has focused on interpreting the predictions of
complex models, often by proposing to isolate the contribu-
tions of individual features to the prediction. Such proposals
were made for Bayesian networks [Suermondt, 1992], multi-
layer Perceptrons [Feraud and Clerot, 2002], RBF networks
[Robnik-Šikonja et al., 2011] and general hierarchical net-
works [Landecker et al., 2013]. [Martens et al., 2008] pro-
posed to interpret the predictions of an SVM classifier by ex-
tracting conjunctive rules using a small subset of features.

In addition to model-specific methods, there have been a
few suggestions for model-agnostic frameworks. [Robnik-
Šikonja and Kononenko, 2008] proposed measuring the effect
of an individual feature on an unknown classifier’s prediction
by checking what the prediction would have been if that fea-
ture value was absent and comparing the two using various
distance measures. The effects are then displayed visually to
explain the main contributors towards a prediction or to com-
pare the effect of the feature in various models. This method
was extended to include regression models in [Kononenko et
al., 2013]. [Baehrens et al., 2010] described an alternative ap-
proach using explanation vectors (class probability gradients)
which highlight the effect of the most important features.

Other work, especially in the NLP literature, has focused
on using a small portion of input as evidence to justify the
prediction result, and often explored alternative definitions of
evidence and styles of explanation. [Martens and Provost,
2014] describe a framework of linguistic explanations for
document classification with bag-of-words features. Their
method shows removal-based explanations of the type “the
classification would change to [alternative class] if the words
[list of words] were removed from the document”, which can
help a domain expert intuitively assess how solid the predic-
tion is. [Kim et al., 2016] select two subset of training sam-
ples: prototypes - samples of different types that the model
represents well; and criticisms - samples that are most mis-
represented by the model. They show that this model-level
explanation makes users more likely to correctly predict the
model’s success with new samples. [Lei et al., 2016] select
small snippets of the input text of text classification tasks as
justification for the decision. The justification model is sepa-
rate from the prediction model, but trained on the same data,
with the constraint that the prediction of the main model for
the (much shorter) justification should be very similar to that
for the full text. [Biran and McKeown, 2017] define evidence
as the intersection of a feature’s actual contribution and ex-
pected contribution, and categorize features that are impor-
tant to the prediction based on that definition. Their work
therefore shows not only actual evidence but also missing ev-
idence, an important part of human reasoning, and differenti-
ates between expected and unexpected evidence.

Work on model approximation focuses on deriving a sim-
ple, interpretable model (such as a shallow decision tree, rule
list, or sparse linear model) that approximates a more com-



plex, uninterpretable one (e.g., a neural net). Early work
described approximations of the entire model [Thrun, 1995;
Craven and Shavlik, 1999]; the disadvantage of these ap-
proaches is that for even moderately complex models, a good
global approximation cannot generally be found. [Ribeiro et
al., 2016] introduce an approach that focuses on local approx-
imations, which behave similarly to the global model only in
the vicinity of a particular prediction. Their algorithm is ag-
nostic to the details of the original model.

In image classification, there has been work on secondary
neural models, inspired by neural caption generation, that
learn to generate textual justifications for classifications of the
primary neural model. [Hendricks et al., 2016] use an LSTM
caption generation model with a loss function that encourages
class discriminative information to generate justifications for
the image classification of a CNN. [Park et al., 2016] produce
both a textual justification and a visual attention map, making
their approach a combination of an interpretable model (See
Section 3.2) and an external justification model. [Vedantam
et al., 2017] produce captions that are locally discriminative,
in the context of other images.

3.2 Interpretable Models
An alternative to methods for interpreting or justifying oth-
erwise black-box models is to produce models that are in-
herently interpretable. One family of models that are readily
interpretable by humans are shallow rule-based models: de-
cision lists and decision trees. [Rudin et al., 2013] introduced
classifiers that use association rules [Agrawal et al., 1993],
which can be learned efficiently from sparse data. This family
of models includes Bayesian Rule Lists [Letham et al., 2015],
an algorithm that generates a posterior distribution of decision
lists that encourages sparsity as well as accuracy; Bayesian
Or’s of And’s [Wang et al., 2015], highly efficient disjunctive
rule lists; and Falling Rule Lists [Wang and Rudin, 2015],
where the order of rules implies both domain-level impor-
tance and estimated probability of success. Other approaches
have focused on creating sparse models via features selection
or extraction that aims to optimize interpretability. Exam-
ples include Supersparse Linear Integer Models [Ustun and
Rudin, 2016] and Mind-the-Gap Model [Kim et al., 2015].

In deep learning, attention mechanisms which allow a
model to focus on a subset of its vector representation were
found to improve accuracy on many tasks, particularly within
NLP [Bahdanau et al., 2014] and image classification [Xu et
al., 2015], and at the same time result in significantly more
intuitive hidden states that appear semantically appropriate to
humans when inspected.

Finally, there has been some work on compositional gener-
ative models which are constrained or encouraged to learn hi-
erarchical, semantically meaningful representations of data.
[Si and Zhu, 2013] learn compositional models of objects
in images: an object (e.g., a cat) contains a mandatory set
of parts (e.g., ears), but each part can come in many forms
(pointed, round...), and each form is represented using a
pixel-level generative model. [Lake et al., 2015] learn a gen-
erative model of linguistic character images from sparse data.
Their approach infers motor programs (line strokes) from
sample images and learns a prior generative model of gen-

erative models, which can then produce a reasonable model
from even one sample of a new character.

4 Conclusion
While eXplainable AI (XAI) is only now gaining widespread
visibility, the ML literature and that of allied fields contain a
long, continuous history of work on explanation and can pro-
vide a pool of ideas for researchers currently tackling the task
of explanation. Despite this history, current efforts face un-
precedented difficulties: contemporary models are more com-
plex and less interpretable than ever; they are used for a wider
array of tasks, and are more pervasive in everyday life than in
the past; and they are increasingly allowed to make (and take)
more autonomous decisions (and actions). Justifying these
decisions will only become more crucial, and there is little
doubt that this field will continue to rise in prominence and
produce exciting and much needed work in the future.
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