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Abstract

The dearth of published empirical data on major industrial systems has been one of the reasons that
software engineering has failed to establish a proper scientific basis. In this paper we hope to
provide a small contribution to the body of empirical knowledge. We describe a number of results
from a quantitative study of faults and failures in two releases of a major commercial system. We
tested a range of basic software engineering hypotheses relating to: the Pareto principle of
distribution of faults and failures; the use of early fault data to predict later fault and failure data;
metrics for fault prediction; and benchmarking fault data. For example, we found strong evidence
that a small number of modules contain most of the faults discovered in pre-release testing, and that
a very small number of modules contain most of the faults discovered in operation. However, in
neither case is this explained by the size or complexity of the modules. We found no evidence to
support previous claims relating module size to fault density, nor did we find evidence that popular
complexity metrics are good predictors of either fault-prone or failure-prone modules. We
confirmed that the number of faults discovered in pre-release testing is an order of magnitude
greater than the number discovered in 12 months of operational use. We also discovered fairly
stable numbers of faults discovered at corresponding testing phases. Our most surprising and
important result was strong evidence of a counter-intuitive relationship between pre and post
release faults: those modules which are the most fault-prone pre-release are among the least fault-
prone post-release, while conversely the modules which are most fault-prone post release are
among the least fault-prone pre-release. This observation has serious ramifications for the
commonly used fault density measure. Not only is it misleading to use it as a surrogate quality
measure, but its previous extensive use in metrics studies is shown to be flawed. Our results
provide data-points in building up an empirical picture of the software development process.
However, even the strong results we have observed are not generally valid as software engineering
laws because they fail to take account of basic explanatory data, notably testing effort and
operational usage. After all, a module which has not been tested or used will reveal no faults
irrespective of its size, complexity, or any other factor.

Keywords: software faults and failures, software metrics, empirical studies

1. Introduction
Despite some heroic efforts from a small number of research centres and individuals (see, for example
[Carman et al 1995],[ Daskalantonakis 1992] [Kaaniche and Kanoun 1996], [Kenney and Vouk
1992],[Khoshgoftaar et al 1996], [Levendel 1990], [Ohlsson N and Alberg  1996], [Shen et al 1985])
there continues to be a dearth of published empirical data relating to the quality and reliability of
realistic commercial software systems. Two of the most important studies [Adams 1984] and [Basili
and Perricone 1984] are now over 12 years old. Adams' study revealed that a great proportion of latent
software faults lead to very rare failures in practice, while the vast majority of observed failures are
caused by a tiny proportion of the latent faults. Adams observed a remarkably similar distribution of
such fault 'sizes' across nine different major commercial systems.  One conclusion of the Adams' study
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is that removing large numbers of faults may have a negligible effect on reliability; only when the small
proportion of ’large’ faults are removed will reliability improve significantly. Basili and Pericone looked
at a number of factors influencing the fault and failure proneness of modules. One of their most notable
results was that larger modules tended to have a lower fault density than smaller ones. Fault density is
the number of faults discovered (during some pre-defined phase of testing or operation) divided by a
measure of module size (normally Thousands of Lines on Code). While the fault density measure has
numerous weaknesses as a quality measure (see [Fenton and Pfleeger 1996] for an in-depth discussion
of these) this result is nevertheless very surprising.  It appears to contradict the very basic hypotheses
that underpin the notions of structured and modular programming. Curiously, the same result has been
rediscovered in other systems by [Moeller and Paulish 1995]. Recently Hatton provided an extensive
review of similar empirical studies and came to the conclusion:

‘Compelling empirical evidence from disparate sources implies that in any software system, larger
components are proportionally more reliable than smaller components’ [Hatton 1997].

Thus the various empirical studies have thrown up results which are counter-intuitive to very basic and
popular software engineering beliefs. Such studies should have been a warning to the software
engineering research community about the importance of establishing a wide empirical basis. Yet these
warnings were clearly not heeded. In [Fenton et al 1994] we commented on the almost total absence of
empirical research on evaluating the effectiveness of different software development and testing
methods. There also continues to be an almost total absence of published benchmarking data.

In this paper we hope to provide a very small contribution to the body of empirical knowledge by
describing a number of results from a quantitative study of faults and failures in two releases of a major
commercial system.  We do not claim that the results presented here are novel; on the contrary, we
believe that similar analyses are being performed (with similar results) for major systems throughout the
world. However, it appears that few organisations are publishing such results, even in the ‘grey
literature’ and so there is little if any similar published data. We make no claims about the
generalisation of these results, but in time we hope they can form part of a broader picture.

In Section 2 we describe the background to the study and the basic data that was collected. In Section 3
we provide pieces of evidence that one day (if a reasonable number of similar studies are published)
may help us test some of the most basic of software engineering hypotheses. In particular we present a
range of results and examine the extent to which they provide evidence for or against the following
hypotheses:

•  Hypotheses relating to the Pareto principle of distribution of faults and failures
1a) a small number of modules contain most of the faults discovered during pre-release testing;
1b) if a small number of modules contain most of the faults discovered during pre-release

testing then this is simply because those modules constitute most of the code size
2a) a small number of modules contain the faults that cause most failures
2b) if a small number of modules contain most of the operational faults then this is simply

because those modules constitute most of the code size.
 

•  Hypotheses relating to the use of early fault data to predict later fault and failure data (at the module
level):

3) A higher incidence of faults in function testing implies a higher incidence of faults in system
testing

4) A higher incidence of faults in pre-release testing implies higher incidence of failures in
operation.

 We tested each of these hypotheses from an absolute and normalised fault perspective.
 
•  Hypotheses about metrics for fault prediction

5) Simple size metrics, such as Lines of Code (LOC) are good predictors of fault and failure
prone modules.

6) Complexity metrics are better predictors than simple size metrics of fault and failure-prone
modules

 
•  Hypotheses relating to benchmarking figures for quality in terms of defect densities
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7) Fault densities at corresponding phases of testing and operation remain roughly constant
between subsequent major releases of a software system

8) Software systems produced in similar environments have broadly similar fault densities at
similar testing and operational phases.

For the particular system studied we provide some evidence for and against some of the above
hypotheses and also explain how some previous studies that have looked at these hypotheses are
flawed. We stress again, of course, that our study is based on just two releases of a major system and
that therefore we make no attempt to generalise the results. There is some support for Hypotheses 1a
and 2a, while 1b  and 2b are rejected.  Hypothesis 3 is weakly supported, while curiously hypothesis 4
is strongly rejected. Hypothesis 5 is partly supported, but hypotheses 6 is weakly rejected for the
popular complexity metrics. However, certain complexity metrics which can be extracted from early
design specifications are shown to be reasonable fault predictors. Hypothesis 7 is partly supported,
while 8 can only be tested properly once other organisations publish analogous results.

We discuss the results in more depth in Section 4. A summary of the results is also provided  there
(Table 7).

2. The basic data
The results reported in this paper are based on empirical data obtained from Ericsson Telecom AB,
which develops large software-intensive systems for telecommunication applications. The data
presented is based on two major consecutive releases of a large legacy project developing switching
systems. Much of the detailed data from the projects are confidential. However, we can report the
following background information

•  The development is carried out at more than 20 design centres sited in more than 10 countries.
•  A new release typically takes over two years and requires more than 200 man-years of effort
•  The data were collected retrospectively, some manually and others with the support of programs

developed by the authors.
•  Both releases were approximately the same total system size

We refer to the earlier of the releases as release n, and the later release as release n+1. For this study
140 and 246 modules respectively from release n and n+1 were selected randomly for analysis from the
set of modules that were either new or had been modified. Because of confidentiality we cannot reveal
either the total number of modules or the total size of the respective releases. The size of the random
samples were limited by the available effort for data-collection and analysis. The reason for the larger
sample size in release n+1 is simply that we were able to automate more of the data collection for this
release and hence were able to handle more data.

The modules in the samples ranged in size from approximately 1000 to 6000 LOC (as shown in Table
1). For release n the smallest module was 37 LOC and the largest was 6580 LOC. For release n+1 the
smallest module was 196 LOC and the largest was 8458 LOC).

Table 1. Distribution of modules by size.
LOC Release n Release n+1

         <1000 23 26
  1001-2000 58 85
  2001-3000 37 73
  3001-4000 15 38
  4001-5000 6 16
  5001-6000 0 6
         >6000 1 2

Total 140 246
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2.1 Dependent variable
The dependent variable in this study was number of faults. Faults are traced to unique modules. The
fault data were collected from four different (non-overlapping) phases:

•  function test (FT)
•  system test (ST)
•  first 26 weeks at a number of site tests (SI)
•  first year (approximate) of operation, after site tests  (OP)

Therefore, for each module we have four corresponding instances of the dependent variable.

The testing process and environment used in this project is well established within the company. It has
been developed, maintained, taught and applied for a number of years. A team separated from the
design and implementation organisation develop the test cases based on early function specifications.

Throughout the paper we will refer to the combination of FT and ST faults collectively as testing faults
or pre-release faults. We will refer to the combination of SI and OP faults collectively as operational
faults or post-release faults.

We shall also refer at times to failures. Formally, a failure is an observed deviation of the operational
system behaviour from specified or expected behaviour. All failures are traced back to a unique
(operational) fault in a module. Observation of distinct failures that are traced to the same fault are not
counted separately. This means, for example, that if 20 OP faults are recorded against module x, then
these 20 unique faults caused the set of all failures observed (and which are traced back to faults in
module x) during the first year of operation.

The Company classified each fault found at any phase according to the following:

a) the fault had already been corrected;
b) the fault will be corrected;
c) the fault requires no action (i.e. not treated as a fault);
d) the fault was due to installation problems.

In this paper we have only considered faults classified as b. Internal investigations have shown that the
documentation of faults and their classification according to the above categories is reliable. A
summary of the number of faults discovered in each testing phase for each system release is shown in
Table 2.

Table 2. Distribution of faults per testing phase
pre-release faults post-release faults

Release Function test System test Site test Operation
n  (sample size 140
modules)

916 682 19 52

n+1 (sample size 246
modules)

2292 1008 238 108

Note that, for all but the Site test phase, there were (as might be expected) approximately twice as many
faults recorded in release n+1 compared to n. However, in the Site test phase there were more than ten
times as many faults. There was no obvious explanation for this wide variation. In any case, in much of
the subsequent analysis we group together the Site and Operation test faults as post-release faults.

2.2 Independent variables
Various metrics were collected for each module. These included:
 
•  Lines of code (LOC) as the main size measure
•  McCabe’s cyclomatic complexity (CC).
•  Various metrics based on communication (modelled with signals which are similar to messages)

between modules and within a module. The most important is the metric SigFF  (described in detail
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in [Ohlsson and Alberg, 1996]) which is the count of the number of new and modified signals; such
signals for each module were specified during the specification phase. In [Ohlsson and Alberg,
1996] the SigFF metric was also used as a measure of interphase complexity.

The choice of the particular metrics is explained further in Section 3. The complexity metrics were
collected automatically from the actual design documents using a tool, ERIMET [Ohlsson, 1993]. This
automation was possible as each module was designed using FCTOOL, a tool for the formal description
language FDL which is related to SDL’s process diagrams [Turner, 1993]. The metrics are extracted
direct from the FDL-graphs. The fact that the metrics were computed from artefacts available at the
design stage is an important point. It has often been asserted that computing metrics from design
documents is far more valuable than metrics from source code [Heitkoetter et al 1990]. However, there
have been very few published attempts to do so. [Kitchenham et al, 1990] reported on using design
metrics, based on Henry and Kafura’s information and flow metrics [Henry and Kafura 1981], for
outlier analysis. [Khoshgoftaar et al, 1996] used a subset of metrics that  “could be collected from
design documentation”, but the metrics were extracted from the code. Numerous studies, such as [Ebert
and Liedtke, 1995]; and [Munson and Khoshgoftaar, 1992] have reported using metrics extracted from
source code, but few have reported promising prediction results based on design metrics.

2.3 Analysis techniques
The issue of which statistical tests are relevant for which types of data is discussed in depth in [Fenton
and Pfleeger 1996]. The key points are that data are measured on different scales (such as nominal,
ordinal, interval, and ratio in increasing order of sophistication) and certain statistical analysis
techniques are only meaningful for certain scale types. For example, one of the most common statistics
of all, the mean is not a meaningful way to compute the average of a set of data if the data is not at least
on an interval scale. In what follows we have been careful to use only those statistical analysis
techniques that are relevant for the scale type of the data. Traditional statistical tests of significance
such as the t-test (which assumes an interval or ratio scale for the underlying data) are not appropriate if
the data is only ordinal. In our tests of hypothesis below we use a graphical technique, called Alberg
diagrams [Ohlsson and Alberg 1996] that assume only that the data is at least ordinal data. Alberg
diagrams are used to evaluate the independent variables’ ability to rank the dependent variable.

Examples of  Alberg diagrams appear in Figures 3 and 9. Specifically, an Alberg diagram enables us to
assess both Type I and Type II errors at the same time, for different discriminative thresholds.  For
example, in Figure 3 the upper curve shows the percentage of accumulated number of faults when the
modules have been sorted in decreasing order with respect to the number of faults (that is, the module
with most faults is furthest to the left and the module with fewest faults is furthest to the right). The
predictor that should be assessed is used to order the modules in decreasing order with respect to the
value of the predictor for each module. Thus, the second curve shows the accumulated percentage of
faults for the modules ordered in decreasing order with respect to the predictor value. For a detailed
example (and further discussion) of these statistical techniques applied to a similar dataset to the one in
this paper, see [Ohlsson et al 1998].

3. The hypotheses tested and results

Since the data were collected and analysed retrospectively there was no possibility of setting up any
controlled experiments. However, the sheer extent and quality of the data was such that we could use it
to test a number of popular software engineering hypotheses relating to the distribution and prediction
of faults and failures. In this section we group the hypotheses into four categories. In Section 3.1 we
look at hypotheses relating to the Pareto principle of distribution of faults and failures. It is widely
believed, for example, that a small number of modules in any system are likely to contain the majority
of the total system faults. This is often referred to as the ‘20-80 rule’ in the sense that 80% of the faults
are contained in 20% of the modules. Despite the widespread belief about this principle there is little
published evidence to support it, and the little that there is provides different numbers (ranging from a
weak 20-50 to a strong 10-80 type rule). We provide evidence to support the two most commonly cited
Pareto principles.
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The assumption of the Pareto principle for faults has led many practitioners to seek methods for
predicting the fault-prone modules at the earliest possible development and testing phases. These
methods seem to fall into two categories:

1. use of early fault data to predict later fault and failure data;
2. use of product metrics to predict fault and failure data

Given our evidence to support the Pareto principle we therefore test a number of hypotheses which
relate to these methods of early prediction of fault-prone modules. In Section 3.2, we test hypotheses
concerned with 1) above, while in Section 3.3 we test hypotheses concerned with 2).

Finally, in Section 3.4 we test some hypotheses relating to benchmarking fault data, and at the same
time provide data that, can themselves, be valuable in future benchmarking studies.

3.1 Hypotheses relating to the Pareto principle of distribution of faults and failures

It is widely believed that a relatively small number of all faults or fault types are responsible for the
main part of the total cost of poor quality in many different systems. The Pareto principle [Juran 1964],
also called the 20-80 rule, summarises  this notion. The Pareto principle is used to concentrate efforts
on the vital few, instead of the trivial many. There are a number of examples of the Pareto principle in
software engineering.  Some of these have gained widespread acceptance, such as the notion that in any
given software system most faults lie in a small proportion of the software modules. Adams [1984]
demonstrated that a small number of faults were responsible for a large number of failures. [Munson et
al 1992] motivated their discriminative analysis by referring to the 20-80 rule, even though their data
demonstrated a 20-65 rule. [Zuse 1991] used Pareto techniques to identify the most common types of
faults found during function testing. Finally, [Schulmeyer and MacManus 1987] described how the
principle supports defect identification, inspection and applied statistical techniques.

We investigated four related Pareto hypotheses:

Hypothesis 1a: a small number of modules contain most of the faults discovered during pre-release
testing (phases FT and ST);

Hypothesis 1b: if a small number of modules contain most of the faults discovered during pre-release
testing then this is simply because those modules constitute most of the code size.

Hypothesis 2a: a small number of modules contain most of the operational faults (meaning failures as
we have defined them above observed in phases SI and OP);

Hypothesis 2b: if a small number of modules contain most of the operational faults then this is simply
because those modules constitute most of the code size.

We now examine each of these in turn.

3.1.1 Hypothesis 1a: a small number of modules contain most of the faults discovered during
testing (phases FT and ST)

Figure 1 illustrates that 20% of the modules were responsible for nearly 60% of the faults found in
testing for release n. An almost identical result was obtained for release n+1 but is not shown here. This
is also almost identical to the result in earlier work where the faults from both testing and operation
were considered [Ohlsson et al 1996]. This, together with results such as [Munson et al 1992],
[Kaaniche and Kanoune 1996], provides support for hypothesis 1a), and even suggests a specific Pareto
distribution in the area of 20-60. It is worth noting that this 20-60 finding is not as strong as the one
observed by [Compton and Withrow, 1990] (they found that 12% of the modules, referred to as
packages, accounted for 75% of all the faults during system integration and test).
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Figure 1: Pareto diagram showing percentage of modules versus percentage of faults for
Release n

 

3.1.2 Hypothesis 1b: if a small number of modules contain most of the faults discovered
during pre-release testing then this is simply because those modules constitute most of the
code size.

Since we found strong support for hypothesis 1a, it makes sense to test hypothesis 1b. It is popularly
believed that hypothesis 1a is easily explained away by the fact that the small proportion of modules
causing all the faults actually constitute most of the system size. For example, [Compton and Withdraw,
1990] found that the 12% of modules accounting for 75% of the faults accounted for 63% of the LOC.
In our study we found no evidence to support this hypotheses 1b. For release n, the 20% of the modules
which account for 60% of the faults (discussed in hypothesis 1a) actually make up just 30% of the
system size. The result for release n+1 was almost identical. This compares with the result in [Kaaniche
and  Kanoun 1996] where the 38% of modules that account for 80% of the faults actually constitute
54% of the code.

3.1.3 Hypothesis 2a: a small number of modules contain most of the operational faults
(meaning failures as we have defined them above, namely phases SI and OP)

We discovered not just support for a Pareto distribution, but a much more exaggerated one than for
hypothesis 1a. Figure 2 illustrates this Pareto effect in release n. Here 10% of the modules were
responsible for 100% of the failures found. The result for release n+1 is not so remarkable but is
nevertheless still quite striking: 10% of the modules were responsible for 80% of the failures.
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Figure 2: Pareto diagram showing percentage of modules versus percentage of
failures for Release n
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3.1.4 Hypothesis 2b: if a small number of modules contain most of the operational faults then
this is simply because those modules constitute most of the code size.

As with hypothesis 1a, it is popularly believed that hypothesis 2a is easily explained away by the fact
that the small proportion of modules causing all the failures actually constitute most of the system size.
In fact, not only did we find no evidence for hypothesis 2, but we discovered strong evidence in favour
of a converse hypothesis:

most operational faults are caused by faults in a small proportion of the code

For release n, 100% of the operational faults are contained in modules that make up just 12%  of the
entire system size. For release n+1 60% of the operational faults were contained in modules that make
up just 6%  of the entire system size, while 78% of the operational faults were contained in modules
that make up 10%  of the entire system size.

3.2 Hypotheses relating to the use of early fault data to predict later fault and failure
data

Given the likelihood of hypotheses 1a and 2a there is a strong case for trying to predict the most fault-
prone modules as early as possible during development. In this and the next subsection we test
hypotheses relating to methods of doing precisely that.  First we look at the use of fault data collected
early as a means of predicting subsequent faults and failures. Specifically we test the hypotheses:

Hypothesis 3:  Higher incidence of faults in function testing  (FT) implies higher incidence of faults in
system testing (ST)

Hypothesis 4:  Higher incidence of faults in all pre-release testing (FT and ST) implies higher
incidence of faults in post-release operation (SI and OP).

 
We tested each of these hypotheses from an absolute and normalised fault perspective. We now
examine the results.

3.2.1 Hypothesis 3:  Higher incidence of faults in function testing  (FT) implies higher
incidence of faults in system testing (ST)

The results associated with this hypothesis are not very strong. In release n (see the Alberg diagram in
Figure 3), 50% of the faults in system test occurred in modules which were responsible for 37% of the
faults in function test.

 

0%

20%

40%

60%

80%

100%

15% 30% 45% 60% 75% 90%

FT

ST

% of Modules

% of Accumalated
Faults in ST

Figure 3: Accumulated percentage of the absolute number faults in system test when modules
are ordered with respect to the number of faults in system test and function test for release n.



9

From a prediction perspective the figures indicate that the most fault-prone modules during function test
will, to some extent, also be fault-prone in system test. However, 10% of the most fault-prone modules
in system test are responsible for 38% of the faults in system test, but 10% of the most fault-prone
modules in function test are only responsible for 17% of the faults in system test. This is persistent up to
75% of the modules. This means that nearly 20% of the faults in system test need to be explained in
another way. The same pattern was found when using normalised data (faults/LOC) instead of absolute,
even though the percentages were generally lower and the predictions a bit poorer. In Figure 3a the data
are presented as a simple scatterplot.
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Figure 3a: Scatter plot of faults found in Function test (FT) against faults found in System
Test (ST) for version n - each dot represents a module

The results were only slightly different for release n+1, where we found:

•  50% of the faults in system test occurred in modules which were responsible for 25% of the faults in
function test

•  10% of the most fault-prone modules in system test are responsible for 46% of the faults in system
test, but 10% of the most fault-prone modules in function test is only responsible for 24% of the
faults in system test.

These results (and also when using normalised data instead of absolute) are very similar to the result in
release n.

3.2.2 Hypothesis 4:  Higher incidence of faults in all pre-release testing (FT and ST) implies
higher incidence of faults in post-release operation (SI and OP).

The rationale behind hypothesis 4 is the belief in the inevitability of ‘rogue modules’ -  relatively small
proportion of modules in a system that account for most of the faults and which are likely to be fault-
prone both pre- and post release. It is often assumed that such modules are somehow intrinsically
complex, or generally poorly built. ‘If you want to find where the faults lie, look where you found them
in the past’ is a very common and popular maxim. For example, [Compton and Withrow, 1990] have
found as much as six times greater post delivery defect density when analysing modules with faults
discovered prior to delivery.

The hypothesis is by no means universally accepted. There are some who acknowledge that a high
incidence of faults in a module prior to release may simply confirm that such a module has been well
tested and will therefore be reliable in operation. However, the literature on metrics validation [Fenton



10

and Kitchenham 1991] confirms fairly widespread acceptance of the hypothesis despite little empirical
evidence to support it. Specifically, many metrics validation studies have used pre-release module fault
density (the number of faults found in the module divided by the size of the module) as a surrogate
measure for how reliable the module is in operation.

In many respects the results in our study relating to this hypothesis are the most remarkable of all. Not
only is there no evidence to support the hypothesis, but there is evidence to support a converse
hypothesis. In both release n and release n+1 almost all of the faults discovered in pre-release testing
appear in modules which subsequently reveal almost no operation faults. Specifically, we found:

•  In release n (see Figure 4), 93% of faults in pre-release testing occur in modules which have NO
subsequent operational faults (of which there were 75 in total). Thus 100% of the 75 failures in
operation occur in modules which account for just 7% of the faults discovered in pre-release testing.
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Figure 4: Scatter plot of pre-release faults against post-release faults for version n (each dot
represents a module)

•  In release n+1 we observed a much greater number of operational faults, but a similar phenomenon
to that of release n (see Figure 5). Some 77% of pre-release faults occur in modules which have NO
post-release faults. Thus 100% of the 366 failures in operation occur in modules which account for
just 23% of the faults discovered in function and system test.

These remarkable results are also closely related to the Adams’ phenomenon. The results have major
ramifications for the commonly used software measure, fault density. Specifically it appears that
modules with high fault density pre-release are likely to have low fault-density post-release, and vice
versa. We discuss the implications at length in Section 4, including the ramifications on previous
metrics validation studies.
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Figure 5: Scatter plot of pre-release faults against post-release faults for version n+1 (each dot
represents a module)

3.3 Hypotheses about metrics for fault prediction

In the previous subsection we were concerned with using early fault counts to predict subsequent fault
prone modules.  In the absence of early fault data, it has been widely proposed that software metrics
(which can be automatically computed from module designs or code)  can be used to predict fault prone
modules. In fact, this is widely considered to be the major benefit of such metrics [Fenton and Pfleeger
1997].  We therefore attempted to test the basic hypotheses which underpin these assumptions.
Specifically we tested:

Hypothesis 5: Size metrics (such as LOC) are good predictors of fault and failure prone modules.
Hypothesis 6: Complexity metrics are better predictors than simple size metrics, especially at predicting

fault-prone modules

3.3.1 Hypothesis 5: Size metrics (such as LOC) are good predictors of fault and failure prone
modules.

Strictly speaking, we have to test several different, but closely, related hypotheses:

Hypothesis 5a: Smaller modules are less likely to be failure prone than larger ones
Hypothesis 5b Size metrics (such as LOC) are good predictors of number of pre-release faults in a

module
Hypothesis 5c: Size metrics (such as LOC) are good predictors of number of post-release faults in a

module
Hypothesis 5d: Size metrics (such as LOC) are good predictors of a module’s (pre-release) fault-density
Hypothesis 5e: Size metrics (such as LOC) are good predictors of a module’s (post-release) fault-

density

Hypothesis 5a underpins, in many respects, the principles behind most modern programming methods,
such as modular, structured, and objected oriented. The general idea has been that smaller modules
should be easier to develop, test, and maintain, thereby leading to fewer operational faults in them. On
the other hand, it is also accepted that if modules are made too small then all the complexity is pushed
into the interface/communication mechanisms. Size guidelines for decomposing a system into modules
are therefore desirable for most organisations.
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It turns out that the small number of relevant empirical studies have produced counter-intuitive results
about the relationship between size and (operational) fault density. Basili and Pericone [1984] reported
that fault density appeared to decrease with module size. Their explanation to this was the large number
of interface faults were spread equally across all modules. The relatively high proportion of small
modules were also offered as an explanation. Other authors, such as [Moeller and Paulish 1995] who
observed a similar trend, suggested that larger modules tended to be under better configuration
management than smaller ones which tended to be produced ‘on the fly’. In fact our study did not reveal
any similar trend, and we believe the strong results of the previous studies may be due to inappropriate
analyses.

We tested hypothesis 5a by replicating the key part of the [Basili and Pericone 1984] study. Table 3
(which compares with Basili and Perricone’s Table III) shows the number of modules that had a certain
number of faults. The table also displays the figures for the different types of modules and the
percentages. The table groups modules according to the frequency of faults found. Thus, the first row
considers those modules for which 0 faults were found, the second row considers those modules for
which 1 fault was found etc.  For example, reading the first row (about modules that had 0 faults), we
find that :

•  for release n there were 9 modified modules (with 0 faults) and 0 new modules  (with 0 faults). The
9 modified modules made up 7% of all the modified modules.

•  for release n+1 there were 15 modified modules (with 0 faults) and 3 new modules  (with 0 faults).
The 15 modified modules made up 7% of all the modified modules. Additionally, for this release,. a
number of modules that existed before the project were split into two modules. The data for these
are listed in the column labelled ‘Split’.

The data set analysed in this paper has, in comparison with [Basili and Pericone 1984] a lower
proportion of modules with few faults and the proportion of new modules is lower. In subsequent
analysis all new modules have been excluded. The modules are also generally larger than those in
[Basili and Pericone 1984], but we do not believe this introduces any bias.

Hypotheses 5b and 5c are tested with the two respective scatter plots for lines of code versus the
number of pre- and post-release faults in figure 6. As the figures shows there no strong evidence of

Table 3. Number of Modules Affected by a fault for Release n (140 modules, 1815 Faults) and Release n+1 (246
modules, 3795 faults ).

Release n Release n+1

Fault Modified New
Percent

modified modules Modified New Split
Percent

modified modules
0 9 0 7 15 3 0 7

1 5 3 4 16 1 0 7

2 12 0 9 18 2 0 8

3 10 0 8 13 0 0 6

4 8 0 6 12 1 0 5

5 12 1 9 7 0 0 3

6 3 1 2 14 1 0 6

7 4 0 3 5 0 0 2

8 7 0 5 5 0 1 2

9 8 2 6 13 0 1 6

10 5 0 4 6 2 0 3

11 to 15 17 1 13 24 1 0 11

16 to 20 4 0 3 14 2 3 6

21 to 25 3 0 2 21 0 0 9

26 to 30 7 0 5 9 0 1 4

31 to 35 5 0 4 8 0 1 4

36 to 40 2 0 2 6 0 0 3

>40 9 2 7 18 0 2 8
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trends for release n+1. Neither could any strong trends be observed when line of code versus the total
number of faults were graphed in Figure 7. The results for release n were reasonably similar.
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 Figure 6: Scatterplots of LOC against pre- and post-release faults for release n+1 (each dot
represents a module).
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Figure 7: Scatterplots of LOC against all faults for release n+1 (each dot represents a
module).

When Basili and Pericone could not see any trend they calculated the number of faults per 1000
executable lines of code. Table 4 (which compares with table VII in [Basili and Pericone 1984]) shows
these results for our study.

Table 4. Faults/1000 Lines of code release n and n+1.
Release n Release n+1

Module size Frequency Faults/1000 Lines Frequency Faults/1000 Lines

500 3 1.45 6 13

1000 15 4.77 17 6

1500 32 5.24 35 5

2000 24 6.32 41 7

2500 14 5.88 34 5

3000 22 5.74 37 5

3500 11 7.83 18 7

>3500 9 7.38 42 8

Superficially, the results in Table 4 for release n+1 appear to support the Basili and Pericone finding. In
release n+1 it is clear that the smallest modules have the highest fault density. However, the fault
density is very similar for the other groups. For release n the result is the opposite of what was reported
by Basili and Perricone. The approach to grouping data as done in [Basili and Perricone 1984] is highly
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misleading. Basili and Pericone did not show a simple plot of fault density against module size, as we
have done in Figure 8 for release n+1. Even though the grouped data for this release appeared to
support the Basili and Pericone findings, this graph shows only a very high variation for the small
modules and no evidence that module size has a significant impact on fault-density. Nor could we find
support for hypotheses 5e and 5d . Clearly other explanatory factors, such as design, inspection and
testing effort per module, will be more important.
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Figure 8: Scatter plot of module fault density against size for release n+1

The LOC ranking ability is assessed in the Albert diagram of Figure 9. The diagram reveals that, even
though previous analysis did not indicate any predictability, LOC is quite good at ranking the most
fault-prone modules, and for the most fault prone-modules (the 20 percent) much better than any
previous ones.
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Figure 9. Accumulated percentage of the absolute number of all faults when modules are
ordered with respect to LOC for release n+1.

3.3.2 Hypothesis 6: Complexity metrics are better predictors than simple size metrics of fault
and failure-prone modules

‘Complexity metrics’ is the rather misleading term used to describe a class of measures that can be
extracted directly from source code (or some structural model of it, like a flowgraph representation).
Occasionally (and more beneficially) complexity metrics can be extracted before code is produced,
such as when the detailed designs are represented in a graphical language like SDL (as was the case for



15

the system in this study). The archetypal complexity metric is McCabe’s cyclomatic number [McCabe,
1976], but there have in fact been many dozens that have been published [Zuse 1991]. The details, and
also the limitations of complexity metrics, have been extensively documented (see [Fenton and Pfleeger
1996]) and we do not wish to re-visit those issues here. What we are concerned with here is the
underlying assumption that the most commonly used complexity metrics are useful because they are
(easy to extract) indicators of where the faults lie in a system. For example, Munson and Khosghoftaar
asserted:

‘There is a clear intuitive basis for believing that complex programs have more faults in them than
simple programs’, [Munson and Khosghoftaar, 1992]

An implicit assumption is that complexity metrics are better than simple size measures in this respect
(for if not there is little motivation to use them). There have been many dozens of investigations into the
ability of different complexity metrics to predict fault proneness. Most studies have concentrated on
McCabe’s cyclomatic complexity and the Halstead metrics. The results of these studies are mixed.
There is still no conclusive evidence that such crude metrics are better predictors of fault-proneness
than something as simple as LOC. It was because of this that researchers have long been investigating
more discriminating and sensible complexity metrics. Nevertheless, cyclomatic complexity remains
exceptionally popular. It is easily computed by static analysis (unlike most of the more discriminating
metrics) and it is widely used for quality control purposes. For example, [Grady 1992] reports that, at
Hewlett Packard, any modules with a cyclomatic complexity higher than 16 must be re-designed.
Cyclomatic complexity, along with some more relevant complexity metrics (based on SigFF), were
routinely collected in our case study system. Because of the continued widespread popularity of the
cyclomatic complexity metric, together with the doubts about its true validity, we now investigate its
validity with respect to it fault prediction power. Thus, the results here provide another validation study
(but one which we argue is based on more realistic fault data). We also perform a similar analysis of the
SigFF based metrics described in Section 2.2 above.

In testing Hypothesis 5, we demonstrated the problem with comparing average figures for different size
intervals. Instead of replicating the relevant analysis in [Basili and Pericone 1984] by calculating the
average cyclomatic number for each module size class, and than plotting the results we just generated
scatter plots and Alberg diagrams.

When the cyclomatic complexity and the pre- and post-release faults were graphed for release n+1
(Figure 10) we observed a number of interesting trends. The most complex modules appear to be more
fault-prone in pre-release, but appear to have nearly no faults in post-release. The most fault-prone
modules in post-release appear to be the less complex modules. This could be explained by how test
effort is distributed over the modules: modules that appear to be complex are treated with extra care
than simpler ones. Analysing retrospectively the earlier graphs for size versus faults reveal a similar
pattern.
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Figure 10: Scatterplots of cyclomatic complexity against number of pre-and post-release
faults for release n+1 (each dot represents a module).

The scatter plot for the cyclomatic complexity and the total number of faults (Figure 11) shows again
some small indication of correlation. The Alberg diagrams were similar as when size was used.



16

0

20

40

60

80

100

120

140

160

0 1000 2000 3000

Faults

Cyclomatic complexity

Figure 11: Scatterplot of cyclomatic complexity against all faults for release n+1 (each dot
represents a module).

To explore the relations further the scatter plots were also graphed with normalised data (Figure 12).
The result showed even more clearly that the most-fault prone modules in pre-release have nearly no
post-release faults.
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 Figure 12: Scatterplots of cyclomatic complexity against fault density (pre-and post-
release) for release n+1 (each dot represents a module).

In order to determine whether or not large modules were less dense or complex than smaller modules
[Basili and Perricone, 1984] plotted the cyclomatic complexity versus module size. Following the same
pattern in earlier analysis they failed to see any trends, and therefore they analysed the relation by
grouping modules according to size. As illustrated above this can be very misleading. Instead we
graphed scatter plots of the relation and calculated the correlation (Figure 13).
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Figure 13: Complexity versus Module Size

The relation may not be linear. However, there is a good linear correlation between cyclomatic
complexity and LOC2 (specifically it is  0.79).

Earlier studies [Ohlsson and Alberg, 1996] have suggested that other design metrics could be used in
combination or on their own to explain fault-proneness. Therefore, we did the same analysis using the
SigFF measure instead of cyclomatic complexity.
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Figure 14: Scatterplots of  SigFF against number of pre-and post-release faults for release
n+1 (each dot represents a module).

The scatterplots using absolute numbers (Figure 14), or normalised data did not indicate any new
trends. In earlier work the product of cyclomatic complexity (CC) and SigFF was shown to be a good
predictor of fault-proneness. To evaluate CC*SigFF predictability the Alberg diagram was graphed
(Figure 15). The combined metrics appear to be better than both SigFF and Cyclomatic Complexity on
their own, and also better than the size metric.
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Figure 15. Accumulated percentage of the absolute number of all faults when modules are ordered with
respect to LOC for release n+1.

The above results do not paint a very glowing report of the usefulness of complexity metrics. However,
it can be argued that ‘being a good predictor of fault density’ (even post-release fault density) is not an
especially appropriate validation criteria for complexity metrics. Since ‘complexity’ infers a notion of
difficulty of understanding, the most natural validation criteria for such metrics should be that they are
good predictors of maintainability (as measured, for example, by the time it takes to repair and fix faults
in the given module). This is discussed in [Fenton 1994]. Nevertheless there are some positive aspects.
The combined metric CC*SigFF is again shown to be a reasonable predictor of fault-prone modules.
Also, measures like SigFF are, unlike LOC, available at a very early stage in the software development.
The fact that it correlates so closely with the final LOC, and is a good predictor of total number of
faults, is a major benefit.

3.4 Hypotheses relating to benchmarking
One of the major benefits of collecting and publicising the kind of data discussed in this paper is to
enable both intra- and inter-company comparisons. Despite the incredibly vast volumes of software in
operation throughout the world there is no consensus about what constitutes, for example, a good, bad,
or average fault density under certain fixed conditions of measurement. It does not seem unreasonable
to assume that such information might be known, for example, for commercial C programs where faults
are defined as operational faults (in the sense of this paper) during the first 12 months of use by a
typical user. Although individual companies may know this kind of data for their own systems, little has
been published. The ‘grey’ literature (as referenced, for example, in [Dyer 1992], [Gibson 1992],
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[Pfleeger and Hatton 1997]) seems to suggest some crude (but not fully substantiated) guidelines such
as the following for fault density in the first 12 months of typical operational use:

•  less that 1 fault per thousand lines of code (KLOC) is very good - and typically only achieved by
companies using state-of-the-art development and testing methods

•  between 3 to 8 faults per KLOC is typical
•  greater than 10 faults per KLOC is bad

In one of the few fully documented studies, [Kaaniche and Kanoun 1996] report on a fault density of
just under 3 faults per KLOC for a major telecommunications system, but this is measured over five
years of operational use.

When pre-release faults only are considered there is some notion that 10-30 faults per KLOC is typical
for function, system and integration testing combined. For reasons discussed already, high values of
pre-release fault density is not indicative of poor quality (and may in fact suggest the opposite).
Therefore, it would be churlish to talk in terms of ‘good’ and ‘bad’ fault densities because, as we have
already stressed, these figures may be explained by key factors such as the effort spent on testing.

In this study,  since we have data on successive releases, we can consider the following hypothesis

Hypothesis 7: Fault densities at corresponding phases of testing and operation remain roughly constant
between subsequent major releases of a software system

The results we present, being based only on one system, represents just a single data-point, but
nevertheless we believe it may also be valuable for other researchers.

In a similar vein we consider:

Hypothesis 8: Software systems produced in similar environments have broadly similar fault densities
at similar testing and operational phases.

Really we are hoping to build up an idea of the range of fault densities that can reasonably be expected.
We compare our results with some other published data.

3.4.1 Fault densities at corresponding phases of testing and operation remain roughly
constant between subsequent major releases of a software system

Table 5: Fault densities at the four phases of testing and operation
FT ST SI OP

Rel n 3.49 2.60 0.07 0.20
Rel n+1 4.15 1.82 0.43 0.20

As table 5 shows, there is some support for the hypothesis that the fault-density remains roughly the
same between subsequent releases. The only exceptional phase is SI. As well as providing some support
for the hypothesis the result suggests that the development process is stable and repeatable with respect
to the fault-density.

3.4.2 Software systems produced in similar environments have broadly similar fault densities
at similar testing and operational phases.

To test this hypothesis we compared the results of this case study with other published data. For
simplicity we restricted our analysis to the two distinct phases: 1) pre-release fault density; and 2) post-
release fault density. First, we can compare the two results of the two separate releases in the cases
study (Table 6).

Table 6: Fault densities pre-and post-release for the case study system
Pre-release Post-release All
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Rel n 6.09 0.27 6.36
Rel n+1 5.97 0.63 6.60

The overall fault densities are similar to those reported for a range of systems in [Hatton 1995], while
[Agresti and Evanco, 1992] reported similar ball-park figures in a study of Ada programs, 3.0 to 5.5
faults/KLOC. The post-release fault densities seem to be roughly in line of those reported studies of
best practice.

More interesting is the difference between the pre- and post-release fault densities. In both versions the
pre-release fault density is an order of magnitude higher than the post-release fault density.
Of the few published studies that reveal the difference between pre- and post-release fault density,
[Pfleeger and Hatton, 1997] also report 10 times as many faults in pre-release (although the overall
fault density is lower). [Kitchenham et al 1986] reports a higher ratio of pre-release to post-release.
Their study was an investigation into the impact of inspections; combining the inspected and non-
inspected code together reveals a pre-release fault density of approx 16 per KLOC and a post-release
fault density of approximately 0.3 per KLOC. However, it is likely that the operational time here was
not as long. [Kaaniche and Kanoun 1996] report a very different picture of pre- and post-release fault
densities; in their paper the average fault density over all modules appears to be slightly higher post-
release than pre-release. However, this can be explained by the fact that ‘pre-release’ testing in this case
is restricted to something analogous to  our system test, while the post-release period is some five years
of operational use.

4. Discussion and conclusions
Apart from the usual quality control angle, a very important perceived benefit of collecting fault data at
different testing phases is to be able to move toward statistical process control for software
development. For example, this is the basis for the software factory approach proposed by Japanese
companies such as Hitachi [Yasuda and Koga 1995] in which they build fault profiles that enable them
to claim accurate fault and failure prediction. Another important motivation for collecting the various
fault data is to enable us to evaluate the effectiveness of different testing strategies. In this paper we
have used an extensive example of fault and failure data to test a range of popular software engineering
hypotheses.

The results we have presented (and which are summarised in Table 7) come from just two releases of a
major system developed by a single organisation. We make no claims about the generalisation of these
results. However, given the rigour and extensiveness of the data-collection and also the strength of
some of the observations, we feel that there are lessons to be learned by the wider community..

Number Hypothesis Case study evidence?
1a a small number of modules contain most of the faults

discovered during pre-release testing
Yes - evidence of 20-
60 rule

1b if a small number of modules contain most of the faults
discovered during pre-release testing then this is simply
because those modules constitute most of the code size

No

2a a small number of modules contain most of the operational
faults

Yes - evidence of 20-
80 rule

2b if a small number of modules contain most of the operational
faults then this is simply because those modules constitute
most of the code size

No - strong evidence of
a converse hypothesis

3 Higher incidence of faults in function testing  (FT) implies
higher incidence of faults in system testing

Weak support

4 Higher incidence of faults in all pre-release testing implies
higher incidence of faults in post-release operation

No - strongly rejected

5a Smaller modules are less likely to be failure prone than
larger ones

No

5b Size metrics (such as LOC) are good predictors of number of
pre-release faults in a module

Weak support

5c Size metrics (such as LOC) are good predictors of number of No
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post-release faults in a module
5d Size metrics (such as LOC) are good predictors of a

module’s (pre-release) fault-density
No

5e Size metrics (such as LOC) are good predictors of a
module’s (post-release) fault-density

No

6 Complexity metrics are better predictors than simple size
metrics of fault and failure-prone modules

No ( for cyclomatic
complexity), but some
weak support for
metrics based on SigFF

7 Fault densities at corresponding phases of testing and
operation remain roughly constant between subsequent
major releases of a software system

Yes

8 Software systems produced in similar environments have
broadly similar fault densities at similar testing and
operational phases

Yes

Table 7: Support for the hypotheses provided in this case study

The evidence we found in support of the two Pareto principles 1a) and 2a) is the least surprising, but
there was previously little published empirical data to support it. It does seem to be inevitable that a
small number of the modules in a system will contain a large proportion of the pre-release faults and
that a small proportion of the modules will contain a large proportion of the post-release faults.
However, the popularly believed explanations for these two phenomena were not supported in this case:

•  It is not the case that size explains in any significant way the number of faults. Many people seem to
believe (hypotheses 1b and 2b) that the reason why a small proportion of modules account for most
faults is simply because those fault-prone modules are disproportionately large and therefore
account for most of the system size. We have shown this assumption to be false for this system.

•  Nor is it the case that ‘complexity’ (or at least complexity as measured by ‘complexity metrics’)
explains the fault-prone behaviour (hypothesis 6). In fact complexity is not significantly better at
predicting fault and failure prone modules than simple size measures.

•  It is also not the case that the set of modules which are especially fault-prone pre-release are going
to be roughly the same set of modules that are especially fault-prone post-release (hypothesis 4). Yet
this view seems to be widely accepted, partly on the assumption that certain modules are
‘intrinsically’ difficult and will be so throughout their testing and operational life.

Our strong rejection of hypothesis 4 in this case has some important ramifications. Many believe that
the first place to look  for modules likely to be fault-prone in operation is in those modules which were
fault prone during testing. In fact our results relating to hypothesis 4 suggest exactly the opposite testing
strategy may be the most effective. If you want to find the modules likely to be fault-prone in operation
then you should ignore all the modules which were fault-prone in testing! In reality, the danger here is
in assuming that the given data provides evidence of a causal relationship. The data we observed can be
explained by the fact that the modules in which few faults are discovered during testing may simply not
have been tested properly. Those modules which reveal large numbers of faults during testing may
genuinely be very well tested in the sense that all the faults really are 'tested out of them'. The key
missing explanatory data in this case is, of course, testing effort, which was unfortunately not available
to us in this case study.

The results of hypothesis 4 also bring into question the entire rationale for the way software complexity
metrics are used and validated. The ultimate aim of complexity metrics is to predict modules which are
fault-prone post-release. Yet we have found that there is no relationship between the modules which are
fault-prone pre-release and the modules which are fault-prone post-release. Most previous ‘validation’
studies of complexity metrics have deemed a metric ‘valid’ if it correlates with the (pre-release) fault
density. Our results suggest that ‘valid’ metrics may therefore be inherently poor at predicting what they
are supposed to predict.  The results of hypothesis 4 also highlight the dangers of using fault density as
a de-facto measure of user perceived software quality. If fault density is measured in terms of pre-
release faults (as is very common), then at the module level this measure tells us worse than nothing
about the quality of the module; a high value is more likely to be an indicator of extensive testing than
of poor quality.
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Our analysis of the value of ‘complexity’ metrics is mixed. We confirmed some previous studies’
results that popular complexity metrics are closely correlated to size metrics like LOC. While LOC (and
hence also the complexity metrics) are reasonable predictors of absolute number of faults, they are very
poor predictors of fault density (which is what we are really after). However, some complexity metrics
like SigFF are, unlike LOC, available at a very early stage in the software development process. The
fact that it correlates so closely with the final LOC, is therefore very useful. Moreover, we argued
[Fenton and Pfleeger 1996], that being a good predictor of fault-proneness may not be the most
appropriate test of ‘validity’ of a complexity metric. It is more reasonable to expect complexity metrics
to be good predictors of module attributes such as comprehensibility or maintainability.

We investigated the extent to which benchmarking type data could provide insights into software
quality. In testing hypotheses 7 and 8, we showed that the fault densities are roughly constant between
subsequent major releases and our data indicates that there are 10-30 times as many pre-release faults as
post-release faults. Even if readers are uninterested in the software engineering hypotheses (1-6) they
will surely value the publication of these figures for future comparisons and benchmarking.

We believe that there are no 'software engineering laws' as such, because it is always possible to
construct a system in an environment which contradicts the law.  For example, the studies summarised
in [Hatton 1997] suggest that larger modules have a lower fault density than smaller ones. Apart from
the fact that we found no clear evidence of this ourselves (hypothesis 5) and also found weaknesses in
the studies, it would be very dangerous to state this as a law of software engineering. You only need to
change the amount of testing you do to 'buck' this law.  If you do not test or use a module you will not
observe faults or failures associated with it. Again this is because the association between size and fault
density is not a causal one. It is for this kind of reason that we recommend more complete models that
enable us to augment the empirical observations with other explanatory factors, most notably, testing
effort and operational usage (as discussed, for example, in [Dyer 1992] and [Musa 1993]). In this sense
our results justify the recent work on building causal models of software quality using Bayesian Belief
Networks, rather than traditional statistical methods which are patently inappropriate for defects
prediction [Neil and Fenton 1996]. In the case study systems we did not have available (at the module
level) either  testing effort or operational usage data, but the company has since agreed to collect this
data to help with future modelling.

In the case study system described in this paper, the data-collection activity is considered to be a part of
routine configuration management and quality assurance.  We have used this data to shed light on a
number of issues that are central to the software engineering discipline. If more companies shared this
kind of data, the software engineering discipline could quickly establish the empirical and scientific
basis that it so sorely lacks.
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