Applications of Trigonometry in Real Life
Last Updated :
23 Jul, 2025
Trigonometry has a lot of real-life applications of trigonometry such as in astronomy to calculate the distance between planets and stars. Other than that, one application of trigonometry is the calculation of the height and distance of various objects in the real world.
Before understanding the application of Trigonometry, we need to understand some basic terms such as
Line of Sight
Consider a person looking at the top of the light tower as in the below figure:
Line of Sight - TrigonometryIn this figure (given below), the line DE drawn from the eye of the boy to the top of the tower is called a Line of Sight.
Angle of Elevation
Consider a person looking at the top of the light tower as in the below figure:
Angle of Elevation - TrigonometryThe angle between the line of sight and the horizontal level at the eye of the boy, ΔCDA or ∠D, is called the angle of elevation.
When we measure the angle of elevation, the observer should raise their head and look above the horizontal level.
Measure of Angle of ElevationHere if one wants to calculate the height of the tower without actually measuring it then what and how much information is required?
The following detail is necessary to find out the height of the tower without measuring it:
- Distance, AB or CD, between the tower and the point where the boy standing.
- The angle of elevation, ∠EDC, of the top of the tower.
- The height of the boy DA.
In ΔCDE, the known ∠D is the opposite of the side CE, and it is known that the side CD. So here is the trigonometry ratio, that can be used to apply all these three quantities. Determine tan D or cot D as their ratio involves CD and CE.
Angle of Depression
Now consider a situation as in given figure 4, a person is looking towards a ball from a balcony. Its line of sight is below the horizontal level. The angle between the line of sight and the horizontal level is called the angle of depression.
Angle of Depression - TrigonometryThus, the angle of depression of the point on the object is the angle between the horizontal level and line of sight when the point is the below horizontal level.
Measure of Angle of DepressionIn the above figure, the person at point C, is looking towards the ball at B. CB is the line of sight and AC is the height of the balcony.
In ΔBCD, ∠BCD is the angle of depression of point B. Here is the height of the balcony AC = BD and the distance of the ball from the ground foot of the building AB = CD. According to the given data, the trigonometry ratio can be used as it can involve both known and unknown quantities.
Real-Life Applications of Trigonometry
There are various applications of trigonometry and some of the common applications of trigonometry are:
Trigonometry to Measure Height
The basic use or application of trigonometry is the measure of height. We use the concept of trigonometry to measure the height and distance between two objects by measuring the angles between these objects.
We can easily find the height of an object if we know the distance between any point and the foot of the building and the angle of elevation or the depression of that point from the building.
Trigonometry in Aviation
We use trigonometry in aviation for measuring the height and speed of any flying objects such as Airplanes and missiles.
The exact position of the airplane and other flying objects can be measured if we are given its height and the angle of elevation.
Trigonometry in Navigation
Trigonometry is widely used in the navigation of ships and others we can easily find the position of our ship in the ocean with the help of stars and the knowledge of trigonometry and angles.
Trigonometry in Astronomy
Trigonometry is widely used in astronomy to find the distances and positions of the stars and other heavenly bodies.
We can measure the angle of various heavenly bodies from the Earth by knowing the time taken by the light from that body to reach the Earth's surface and the speed of light we can find its position in space using trigonometry.
Other Uses of Trigonometry
The other uses of trigonometry are discussed below,
- It is used in criminology to study crime scenes such as determining path of bullets or crime scene reconstruction.
- It is used by marine biologists to study the depth of oceans using echo sounding or triangulation.
- It is used to study waves and their properties as waves in mathematics can be represented using sine or cosine functions.
Applications of Trigonometry - Solved Examples
Problem 1: A pole stands vertically on the plane. From a point on the plane, which is 12 m away from the foot of the pole, the angle of elevation of the top of the pole is 30° Find the height of the pole.
Solution:
First, draw a simple diagram of the given problem as below:

In this figure, BC represents the height of the electric pole and ∠CAB or ∠A represents the angle of the elevation of the top of the tower. In ΔABC, ∠CAB is the right angle and AB = 12 m. In ΔABC, CB is needed to be determined i.e. the height of the pole.
To solve the given problem, use trigonometry ratio tan A or cot A as they involve given sides in ratios.
Now, \tan A = \dfrac{CB}{AB}
\Rightarrow \tan 30^{\degree}=\dfrac{CB}{12}
\begin{aligned}\Rightarrow CB&=12\tan30^{\degree}\\ \Rightarrow CB &=4\sqrt{3}\text{ m}\end{aligned}
Hence, the height of the poll is 4√3.
Problem 2: The angle of elevation of the bird, who was sitting on a tree, from a point on the ground, which is 60 m away from the foot of the tree, is 60°. Find the height of the tree. (Take √3 = 1.73).
Solution:
First draw a simple diagram of the given problem as below:

In above figure, AB represents the distance between the ground point and foot of the tree, i.e. 60 m. BC is the height of the tree, let’s assume h.
In ΔABC, ∠ABC is the right angle, and the angle of the elevation is ∠B i.e. 60°.
Using trigonometry ratio tan A,
\tan A = \dfrac{BC}{AB}
\begin{aligned}\Rightarrow \tan 60{\degree}&=\dfrac{h}{60}\\ \Rightarrow h&=60\sqrt{3}\text{ m}\\\Rightarrow h &=103.8\text{ m}\end{aligned}
Hence, the height of the tree is 103.8 m.
Problem 3: A boy sees two clouds from a certain point. The angle of the elevation of the clouds are 30° and 45°. If the height of the clouds from the ground surface is the same and the distance between the clouds is 300 m then find out the height of the cloud.
Solution:
First, draw a simple diagram of the given problem as below.

In this figure, CE and BD represents the height of the clouds and ∠DAB and ∠EAC represents the angle of the elevation of the clouds at point A. In ΔABD, ∠DBA is the right angle, if the height of cloud BD is h then using trigonometry ratio tan A
\tan A=\dfrac{BD}{AB}
\Rightarrow \tan 45^{\degree}=\dfrac{h}{AB}
⇒ AB = h (Since, tan 45° = 1)
In ΔACE, ∠ACE is the right angle, if the height of cloud CE is h then using trigonometry ratio as:
\tan A = \dfrac{CE}{AC}
\Rightarrow \tan30^{\degree} = \dfrac{h}{AC}
\begin{aligned}\Rightarrow \dfrac{1}{\sqrt{3}}&=\dfrac{h}{AC}\\\Rightarrow AC&=h\sqrt{3}\end{aligned}
⇒ AC = h√3
From the above figure 4,
AC = AB + BC
Given: BC = 300.
Therefore, h√3 = h + 300
\begin{aligned}\Rightarrow h&=\frac{300}{\sqrt{3}-1}\\ \Rightarrow h&=410.96\text{ m}\end{aligned}
Hence, the height of the cloud is 410.96 m.
Problem 4: The angle of depression of a bike, standing in a park, from the top of a 45 m high building, is 30°. What is the distance of the bike from the base of the building (in m)?
Solution:
Below is a simple diagram of the given problem.

In above figure, AB represents the distance between the base of the building and the bike. AC is the height of the building, i.e. 45 m.
In ΔBCD, ∠BCD is the right angle and the angle of the depression is ∠C i.e. 30°. Using trigonometry ratio tan C in ΔBCD.
\tan C = \dfrac{BD}{CD}
Here AC = BD and AB = CD.
\begin{aligned}\tan 30{\degree}&=\dfrac{45\text{ m}}{AB}\\ \Rightarrow AB&=45\sqrt{3}\text{ m}\\\Rightarrow AB&=77.85\text{ m}\end{aligned}
Hence, the distance between the base of building and the bike is 77.85 m.
Problem 5: An electrician needs to repair an electric fault to solve the power supply issue in a village. The height of the electric pole, on which the fault exists, is 7 m. He wants to reach a point below 1.5 m from the top of the pole to repair the fault. What length of the ladder he should use to reach the required position if the ladder is inclined at 60° to the horizontal? Also, find how far the ladder he should place from the foot of the pole (Take √3 = 1.73).
Solution:
First, Draw a basic diagram of the given problem as below:
In this figure, BC is the ladder, AD is the total length of the pole, Point C is the where electrician wants to reach.

As given CD = 1.5 m and AD = 7 m.
Therefore,
AC = AD – CD
⇒ AC = 7 – 1.5 m
⇒ AC = 5.5 m
In ΔABC, ∠B is 60° and ∠A is right angle,
\sin B=\dfrac{AC}{BC}
\begin{aligned}\Rightarrow \sin 60{\degree}&=\dfrac{5.5}{BC}\\\Rightarrow BC&=5.5\times\dfrac{4}{\sqrt{3}}\\\Rightarrow BC&=12.71 \text{ m}\end{aligned}
And, in ΔABC,
\tan B=\dfrac{AC}{AB}
\begin{aligned}\tan 60{\degree}&=\dfrac{5.5}{AB}\\AB&=\dfrac{5.5}{\sqrt{3}}\\&=3.17 \text{m}\end{aligned}
Hence, the length of the ladder BC is 12.71 m and the distance between ladder and foot of the pole AB is 3.17 m.
Problem 6: The angle of elevation of a cloud from a point, which is somewhere on the surface of the water of a lake, is 30°. The angle of depression of the shadow of a cloud in the water of the lake from the same point is 60°. If the height of the cloud is 75 m then find the depth of the shadow. (Take √3 = 1.73).
Solution:
First, draw a basic diagram of the given problem as below:

In this figure, AB is the water surface of the lake. Points C and D represent the cloud and its shadow respectively. ∠ABC and ∠ABD are the right angles. BC is the height of the cloud, i.e. 75 m and BD is the depth of the shadow. ∠BAC and ∠BAD are the angle of elevation and the angle of the depression, i.e. 30° and 60°.
In ΔABC,
\tan A = \dfrac{BC}{AB}
\begin{aligned}\Rightarrow \tan 30{\degree}&=\dfrac{75}{AB}\\\Rightarrow AB&=75\sqrt{3}\text{ m}\\\Rightarrow AB&=129.75 \text{ m}\end{aligned}
Now in ΔABD,
\tan A = \dfrac{BC}{AB}
\begin{aligned}\Rightarrow \tan60{\degree}&=\dfrac{BD}{AB}\\\Rightarrow BD&=AB\sqrt{3}\text{ m}\\\Rightarrow BD&=224.46\text{ m}\end{aligned}
Hence, the depth of the shadow is 224.46 m.
Problem 7: Consider the following diagram:

If the √ACB is the right angle find the AB and CD (Take √3 = 1.73).
Solution:
In ΔACD, use the trigonometry ratio sin A,
\sin A = \dfrac{CD}{AD}
\begin{aligned}\Rightarrow & \sin 30{\degree}=\dfrac{CD}{5}\\ \Rightarrow &\dfrac{1}{2}=\dfrac{CD}{5}\\ \Rightarrow& CD=2.5 \text{ m}\end{aligned}
And,
\cos A = \dfrac{AC}{AD}
\begin{aligned}\Rightarrow \cos 30{\degree}&=\dfrac{AC}{5}\\ \Rightarrow \dfrac{\sqrt{3}}{2}&=\dfrac{AC}{5}\\ \Rightarrow AC&=4.33\text{ m}\end{aligned}
In ΔBCD, use the trigonometry ratio \tan B ,
\tan B = \dfrac{CD}{BC}
\begin{aligned}\tan45{\degree}&=\dfrac{CD}{BC}\\ \Rightarrow 1&=\dfrac{CD}{BC}\end{aligned}
⇒ BC = CD = 2.5 m
From the given figure:
AC = AB + BC
⇒ AB = 4.33 m – 2.5 m
⇒ AB =1.83 m
Hence, AB = 1.83 m and CD = 2.5 m.
Problem 8: A 1.5 m tall boy is looking toward two buildings. Both buildings have a height of 12 m. The elevation angle of the top of the buildings is 45° and 60°. Find the distance between the two buildings and the distance of the boy from the near building.
Solution:
A simple diagram of the given problem is drawn below
Figure 6In the above figure, CB and GH represent the two buildings, CG is the distance between the two buildings, CD and GD is the distance between the boy and foot of the buildings of EB and FH respectively.
In ΔCDE and ΔFDG,
EC = FG = EB – AD (Since, AD = CB = GH)
⇒ EC = FG = 12 m – 1.5 m
⇒ EC = FG = 10.5 m
In ΔCDE, ∠CDE is equal to 60\degreeand ∠DCE is the right angle.
\tan D=\dfrac{EC}{CD}
\begin{aligned}\Rightarrow \tan60{\degree}&=\dfrac{10.5}{CD}\\\Rightarrow CD&=\dfrac{10.5}{\sqrt{3}}\end{aligned}
\begin{aligned}\Rightarrow \tan60{\degree}&=\dfrac{10.5}{CD}\\\Rightarrow CD&=\dfrac{10.5}{\sqrt{3}}\\\Rightarrow CD&=6.07\text{ m}\end{aligned}
In ΔFDG, ∠FDG is 45{\degree} and ∠FGD is right angle.
\tan D = \dfrac{FG}{GD}
\begin{aligned}\Rightarrow \tan45{\degree}&=\dfrac{10.5}{GD}\\\Rightarrow GD&=10.5\text{ m}\end{aligned}
The distance between the buildings is:
CG = GD – CD
⇒ CG = 10.5 m – 6.07 m
⇒ CG = 4.43 m
Hence, the distance between the buildings CG is 4.43 m and the distance between the boy and the foot of the near building CD is 6.07 m.
People also ask:
Similar Reads
Maths Mathematics, often referred to as "math" for short. It is the study of numbers, quantities, shapes, structures, patterns, and relationships. It is a fundamental subject that explores the logical reasoning and systematic approach to solving problems. Mathematics is used extensively in various fields
5 min read
Basic Arithmetic
What are Numbers?Numbers are symbols we use to count, measure, and describe things. They are everywhere in our daily lives and help us understand and organize the world.Numbers are like tools that help us:Count how many things there are (e.g., 1 apple, 3 pencils).Measure things (e.g., 5 meters, 10 kilograms).Show or
15+ min read
Arithmetic OperationsArithmetic Operations are the basic mathematical operationsâAddition, Subtraction, Multiplication, and Divisionâused for calculations. These operations form the foundation of mathematics and are essential in daily life, such as sharing items, calculating bills, solving time and work problems, and in
9 min read
Fractions - Definition, Types and ExamplesFractions are numerical expressions used to represent parts of a whole or ratios between quantities. They consist of a numerator (the top number), indicating how many parts are considered, and a denominator (the bottom number), showing the total number of equal parts the whole is divided into. For E
7 min read
What are Decimals?Decimals are numbers that use a decimal point to separate the whole number part from the fractional part. This system helps represent values between whole numbers, making it easier to express and measure smaller quantities. Each digit after the decimal point represents a specific place value, like t
10 min read
ExponentsExponents are a way to show that a number (base) is multiplied by itself many times. It's written as a small number (called the exponent) to the top right of the base number.Think of exponents as a shortcut for repeated multiplication:23 means 2 x 2 x 2 = 8 52 means 5 x 5 = 25So instead of writing t
9 min read
PercentageIn mathematics, a percentage is a figure or ratio that signifies a fraction out of 100, i.e., A fraction whose denominator is 100 is called a Percent. In all the fractions where the denominator is 100, we can remove the denominator and put the % sign.For example, the fraction 23/100 can be written a
5 min read
Algebra
Variable in MathsA variable is like a placeholder or a box that can hold different values. In math, it's often represented by a letter, like x or y. The value of a variable can change depending on the situation. For example, if you have the equation y = 2x + 3, the value of y depends on the value of x. So, if you ch
5 min read
Polynomials| Degree | Types | Properties and ExamplesPolynomials are mathematical expressions made up of variables (often represented by letters like x, y, etc.), constants (like numbers), and exponents (which are non-negative integers). These expressions are combined using addition, subtraction, and multiplication operations.A polynomial can have one
9 min read
CoefficientA coefficient is a number that multiplies a variable in a mathematical expression. It tells you how much of that variable you have. For example, in the term 5x, the coefficient is 5 â it means 5 times the variable x.Coefficients can be positive, negative, or zero. Algebraic EquationA coefficient is
8 min read
Algebraic IdentitiesAlgebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Properties of Algebraic OperationsAlgebraic operations are mathematical processes that involve the manipulation of numbers, variables, and symbols to produce new results or expressions. The basic algebraic operations are:Addition ( + ): The process of combining two or more numbers to get a sum. For example, 3 + 5 = 8.Subtraction (â)
3 min read
Geometry
Lines and AnglesLines and Angles are the basic terms used in geometry. They provide a base for understanding all the concepts of geometry. We define a line as a 1-D figure that can be extended to infinity in opposite directions, whereas an angle is defined as the opening created by joining two or more lines. An ang
9 min read
Geometric Shapes in MathsGeometric shapes are mathematical figures that represent the forms of objects in the real world. These shapes have defined boundaries, angles, and surfaces, and are fundamental to understanding geometry. Geometric shapes can be categorized into two main types based on their dimensions:2D Shapes (Two
2 min read
Area and Perimeter of Shapes | Formula and ExamplesArea and Perimeter are the two fundamental properties related to 2-dimensional shapes. Defining the size of the shape and the length of its boundary. By learning about the areas of 2D shapes, we can easily determine the surface areas of 3D bodies and the perimeter helps us to calculate the length of
10 min read
Surface Areas and VolumesSurface Area and Volume are two fundamental properties of a three-dimensional (3D) shape that help us understand and measure the space they occupy and their outer surfaces.Knowing how to determine surface area and volumes can be incredibly practical and handy in cases where you want to calculate the
10 min read
Points, Lines and PlanesPoints, Lines, and Planes are basic terms used in Geometry that have a specific meaning and are used to define the basis of geometry. We define a point as a location in 3-D or 2-D space that is represented using coordinates. We define a line as a geometrical figure that is extended in both direction
14 min read
Coordinate Axes and Coordinate Planes in 3D spaceIn a plane, we know that we need two mutually perpendicular lines to locate the position of a point. These lines are called coordinate axes of the plane and the plane is usually called the Cartesian plane. But in real life, we do not have such a plane. In real life, we need some extra information su
6 min read
Trigonometry & Vector Algebra
Trigonometric RatiosThere are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
4 min read
Trigonometric Equations | Definition, Examples & How to SolveTrigonometric equations are mathematical expressions that involve trigonometric functions (such as sine, cosine, tangent, etc.) and are set equal to a value. The goal is to find the values of the variable (usually an angle) that satisfy the equation.For example, a simple trigonometric equation might
9 min read
Trigonometric IdentitiesTrigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
10 min read
Trigonometric FunctionsTrigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
6 min read
Inverse Trigonometric Functions | Definition, Formula, Types and Examples Inverse trigonometric functions are the inverse functions of basic trigonometric functions. In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric function
11 min read
Inverse Trigonometric IdentitiesInverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. These functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inv
9 min read
Calculus
Introduction to Differential CalculusDifferential calculus is a branch of calculus that deals with the study of rates of change of functions and the behaviour of these functions in response to infinitesimal changes in their independent variables.Some of the prerequisites for Differential Calculus include:Independent and Dependent Varia
6 min read
Limits in CalculusIn mathematics, a limit is a fundamental concept that describes the behaviour of a function or sequence as its input approaches a particular value. Limits are used in calculus to define derivatives, continuity, and integrals, and they are defined as the approaching value of the function with the inp
12 min read
Continuity of FunctionsContinuity of functions is an important unit of Calculus as it forms the base and it helps us further to prove whether a function is differentiable or not. A continuous function is a function which when drawn on a paper does not have a break. The continuity can also be proved using the concept of li
13 min read
DifferentiationDifferentiation in mathematics refers to the process of finding the derivative of a function, which involves determining the rate of change of a function with respect to its variables.In simple terms, it is a way of finding how things change. Imagine you're driving a car and looking at how your spee
2 min read
Differentiability of a Function | Class 12 MathsContinuity or continuous which means, "a function is continuous at its domain if its graph is a curve without breaks or jumps". A function is continuous at a point in its domain if its graph does not have breaks or jumps in the immediate neighborhood of the point. Continuity at a Point: A function f
11 min read
IntegrationIntegration, in simple terms, is a way to add up small pieces to find the total of something, especially when those pieces are changing or not uniform.Imagine you have a car driving along a road, and its speed changes over time. At some moments, it's going faster; at other moments, it's slower. If y
3 min read
Probability and Statistics
Basic Concepts of ProbabilityProbability is defined as the likelihood of the occurrence of any event. It is expressed as a number between 0 and 1, where 0 is the probability of an impossible event and 1 is the probability of a sure event.Concepts of Probability are used in various real life scenarios : Stock Market : Investors
7 min read
Bayes' TheoremBayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba
13 min read
Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows
13 min read
Descriptive StatisticStatistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
5 min read
What is Inferential Statistics?Inferential statistics is an important tool that allows us to make predictions and conclusions about a population based on sample data. Unlike descriptive statistics, which only summarize data, inferential statistics let us test hypotheses, make estimates, and measure the uncertainty about our predi
7 min read
Measures of Central Tendency in StatisticsCentral tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
11 min read
Set TheorySet theory is a branch of mathematics that deals with collections of objects, called sets. A set is simply a collection of distinct elements, such as numbers, letters, or even everyday objects, that share a common property or rule.Example of SetsSome examples of sets include:A set of fruits: {apple,
3 min read
Practice