CBSE Class 9th Maths Revision Notes is an important phase of student’s life when they’re at a turning point in their life. The reason being class 9 is the foundation level to succeed in class 10. As you know, students must complete Class 9 in order to sit for Class 10 board examinations. Also, it lays the groundwork for the following classes. A kid who is well-versed in class 9 topics would find it simpler to perform well in competitive exams. Math and science are two subjects that demand a lot of practice to score in class 9. Hence we brought out the best from our resource treasury - CBSE Class 9 Maths Notes. GeeksforGeeks specially curated NCERT Notes for Class 9 Maths, compiled by experts.
Class 9th Maths Notes cover some more important topics like Experimental Probability, Volumes of Cubes and Cuboids, Mean, Median, Mode, Range, etc. Our experts have also covered Class 9 Maths Solutions like NCERT Solutions for Class 9 Maths, and RD Sharma Class 9 Solutions.

CBSE Class 9th Maths Revision Notes Chapters List (2023-2024)
Class 9th Maths Revision Notes Chapters List |
---|
Chapter 1: Number System | Chapter 9: Areas of Parallelograms and Triangles |
Chapter 2: Polynomials | Chapter 10: Circles |
Chapter 3: Coordinate Geometry | Chapter 11: Constructions |
Chapter 4: Linear Equations in two variables | Chapter 12: Heron's Formula |
Chapter 5: Introduction to Euclid’s Geometry | Chapter 13: Surface Areas and Volumes |
Chapter 6: Lines and Angles | Chapter 14: Statistics |
Chapter 7: Triangles | Chapter 15: Probability |
Chapter 7: Quadrilateral | |
Deleted Chapters/Topics from NCERT Class 9th Maths Textbook (2023-2024):
The most recent CBSE Class 9th Mathematics syllabus has been changed and reduced by 30% for the upcoming annual assessment in the academic year 2023-2024, you can find the list of all deleted chapters/topics in the table below:
Chapters | Deleted Topics/Chapter |
---|
Chapter 1: Number Systems | - 1.4 Representing real numbers on the number line
|
Chapter 2: Polynomials | |
Chapter 3: Coordinate Geometry | - 3.3 Plotting a point in the plane if its coordinates are given
|
Chapter 4: Linear Equations in Two Variables | - 4.4 Graph of linear equations in two variables
- 4.5 Equations of lines parallel–x–axis and y–axis
|
Chapter 5: Introduction– Euclidean Geometry | - 5.3 Equivalent versions of Euclid’s fifth postulateQuadrilaterals
|
Chapter 6: Lines and Angles | - 6.5 Parallel lines and a transversal
- 6.7 Angle sum property of a triangle
|
Chapter 7: Triangles | - 7.4 Inequalities in triangles
|
Chapter 8: Quadrilaterals | - 8.1 Introduction
- 8.2 Angle sum property of a quadrilateral
- 8.3 Types of Quadrilaterals
- 8.5 Another condition for a Quadrilateral to be a parallelogram
|
Chapter 9: Areas of Parallelogram and Triangles | |
Chapter 10: Circles | - 10.1 Introduction
- 10.2 Circles and its related terms: Review
- Circle through three points
|
Chapter 11: Construction | |
Chapter 12: Heron’s Formula | - 12.1 Introduction
- 12.3 Application of Heron’s formula in finding areas of quadrilaterals
|
Chapter 13: Surface Area and Volume | - 13.1 Introduction
- 13.2 Surface area of a cuboid and cube
- 13.3 Surface area of a right circular cylinder
- 13.6 Volume of cuboid
- 13.7 Volume of cylinder
|
Chapter 14: Statistics | - 14.1 Introduction
- 14.2 Collection of data
- 14.3 Presentation of data
- 14.5 Measure of central tendency
- 14.6 Summary
|
Chapter 15: Probability | |
Chapter 1: Number Systems
The numeral or number system is the combination of natural, integers, rational, irrational, and real numbers. This lesson covers the entire concepts of the numeral system and its types, representation on the number line, laws of rational exponents, and integral powers. To simplify the concept of number systems, the technique of portraying numbers on a number line using certain rules and symbols is known as a number system. A number line is a straight-line representation of integers with a set spacing between them. The Number System is used to do mathematical computations ranging from intricate scientific calculations to calculate how many chocolates are left in the box.
The major topics covered in the Number systems chapter in Class 9 are the Representation of natural numbers, integers, rational numbers on the number line, Rational numbers as recurring/ terminating decimals, and Operations on real numbers. Some topics which have great importance in further chapters of Class 9 are the Rationalization of real numbers and Laws of exponents for real numbers
CBSE Class 9th Maths Revision Notes Chapter 1 Number Systems |
---|
|
|
- Decimal Representation of Rational Numbers
|
|
- Representation of Numbers on Number Line
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 1 |
|
Important rules that are used in CBSE Class 9 Maths Revision Notes Chapter 1 Number Systems are:
- √ab = √a × √b
- √(a/b)= √a/√b
- (√a + √b) × (√a - √b) = a−b
- (a + √b) × (a − √b) = a2 −b
- (√a+√b)2 =a2 + 2√ab +b
- ap × bq = (ab)p+q
- (ap)q = apq
- ap / aq = (a)p-q
- ap / bp = (ab)p
Chapter 2: Polynomials
A polynomial expression is made up of variables, which are also known as indeterminates and coefficients in mathematics. The coefficients involve operations such as subtraction, addition, non-negative integer variable exponents, and multiplication. Both algebraic expressions and polynomials in mathematics are made up of variables and constants, as well as arithmetic operations. The sole difference is that algebraic expressions include irrational numbers in their powers.
Topics covered in Class 9 Polynomial Chapters are the basics of polynomials in one variable (including the Coefficients of a polynomial, terms of a polynomial and zero polynomial), Degree of a polynomial and Types of Polynomials-Monomials, binomials, trinomials. Some important topics covered in this chapter are Factors and multiples, Zeros of a polynomial, and Factorization using the Factor Theorem.
CBSE Class 9th Maths Revision Notes Chapter 2 Polynomials |
---|
|
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 2 |
|
Here is the list of the important theorems learned in CBSE Class 9th Maths Revision Notes Chapter 2 Polynomials:
- Remainder Theorem: If p(x) has the degree greater than or equal to 1 and p(x) when divided by the linear polynomial x – a will give the remainder as p(a).
- Factor Theorem: x – a will be the factor of the polynomial p(x), whenever p(a) = 0. The vice-versa also holds true every time.
CBSE Class 9th Maths Revision Notes Cover the following topics:
Chapter 3: Coordinate Geometry
Coordinate geometry is a part of geometry where the position of the points on the plane is described with the help of an ordered pair of numbers called coordinates.
Coordinate geometry is important because it connects geometry with algebra using line graphs and curves. Because it allows us to find points on any plane, coordinate geometry is helpful in mathematics. It is also used in trigonometry, calculus, and other fields. Learn about the Cartesian coordinate system, coordinate points, how to plot points on coordinate axes, quadrants with signs, and other concepts in coordinate geometry.
CBSE Class 9th Maths Revision Notes Chapter 3 Coordinate Geometry |
---|
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 3 |
|
Important Conclusions from CBSE Class 9th Maths Revision Notes Chapter 3 Coordinate Geometry are:
- The horizontal line is known as the x-axis and the vertical line is called the y-axis.
- The coordinates of a point are in the form of (+, +) in the first quadrant, (–, +) in the second quadrant, (–, –) in the third quadrant, and (+, –) in the fourth quadrant; where + and – denotes the positive and the negative real number respectively.
- The coordinates of the origin are (0, 0) and thereby it gets up to move in the positive and negative numbers.
Chapter 4: Linear Equations in Two Variables
Any equation which can be defined in the form ax + by + c = 0, where a, b, and c are real numbers and a and b are not both zero, is called a linear equation in two variables. This chapter on Linear Equations in Two Variables is an essential subject in Mathematics since it allows us to define physical relationships between two variables, compute rates, perform conversions, and make predictions, among other things.
Students should pay special attention while solving and practicing the questions in this chapter because the majority of the questions in their examinations will require some experience in this area.
CBSE Class 9 Maths Revision Notes Chapter 4 Linear Equations in Two Variables |
---|
|
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 4 |
|
Important formulas and identities in CBSE Class 9 Maths Revision Notes Chapter 4- Linear Equations in Two Variables are:
- (a + b)2 = a2 + 2ab + b2
- (a – b)2 = a2 – 2ab + b2
- (a + b) (a – b) = a2 -b2
- (x + a) (x + b) = x2 + (a + b) x + ab
- (x + a) (x – b) = x2 + (a – b) x – ab
- (x – a) (x + b) = x2 + (b – a) x – ab
- (x – a) (x – b) = x2 – (a + b) x + ab
- (a + b)3 = a3 + b3 + 3ab (a + b)
- (a – b)3 = a3 – b3 – 3ab (a – b)
- (x + y + z)2 = x2 + y2 + z2 + 2xy +2yz + 2xz
- (x + y – z)2 = x2 + y2 + z2 + 2xy – 2yz – 2xz
- (x – y + z)2 = x2 + y2 + z2 – 2xy – 2yz + 2xz
- (x – y – z)2 = x2 + y2 + z2 – 2xy + 2yz – 2xz
- x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz -xz)
- x2 + y2 = 1212 [(x + y)2 + (x – y)2]
- (x + a) (x + b) (x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
- x3 + y3 = (x + y) (x2 – xy + y2)
- x3 – y3 = (x – y) (x2 + xy + y2)
- x2 + y2 + z2 – xy – yz – zx = 1212 [(x – y)2 + (y – z)2 + (z – x)2]
Chapter 5: Introduction to Euclid's Geometry
Euclidean geometry is the branch of geometry that deals with the study of geometrical shapes and figures based on different axioms and theorems. This study provides a brief explanation for flat surfaces. This chapter is the introduction to Euclid for Class 9 students.
This chapter is all about Euclid’s method of formalizing observed phenomena into rigorous Mathematics with definitions, axioms, and postulates. Also includes the five postulates of Euclid, Equivalent versions of the fifth postulate, and a Representation of the relationship between axiom and theorem.
CBSE Class 9 Maths Revision Notes Chapter 5 Introduction to Euclid Geometry |
---|
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 5 |
|
Important rules from CBSE Class 9 Maths Revision Notes Chapter 5 Introduction to Euclid's Geometry:
- Axioms: The basic facts which are taken for granted without proof are called axioms. Some of Euclid's axioms are:
- Things which are equal to the same thing are equal to one another.
- If equals are added to equals, the wholes are equal.
- If equals are subtracted from equals, the remainders are equal.
- Things which coincide with one another are equal to one another.
- The whole is greater than the part.
- Postulates: Axioms are the general statements, postulates are the axioms relating to a particular field. Euclid's five postulates are.
- A straight line may be drawn from anyone point to any other point.
- A terminated line can be produced indefinitely.
- A circle can be drawn with any center and any radius.
- All right angles are equal to one another.
- If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely meet on that side on which the angles are less than two right angles.
Chapter 6: Lines and Angles
In geometry, Lines and Angles are defined as figures that are made up of infinite points extending indefinitely in both directions. Lines are straight and have length and breadth, while an angle is a figure from which two rays emerge from a common point.
To define it in simpler words, a line is defined as a row of closely spaced dots that spans in two directions indefinitely. It just has one dimension, which is its length. A line can be represented by a horizontal mark written on a sheet of paper. An angle is a figure formed by two rays that intersect at a shared terminus. A protractor is used to measure them in degrees. Lines and angles are present in all geometry forms.
This chapter majorly includes the basics of Lines and Angles and Types of angles. Also include important properties and theorems like the Angle sum property, etc.
CBSE Class 9 Maths Revision Notes Chapter 6 Lines and Angles |
---|
|
|
- Parallel Lines and a Transversal
- Corresponding Angles
- Alternate Interior Angles
- Alternate Exterior Angles
- Co-Interior Angles
- Sum of Co-interior angles is supplementary
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 6 |
|
Important definitions from CBSE Class 9 Maths Revision Notes Chapter 6 Lines and Angles are:
- Acute angle: An acute angle measures between 0° and 90°.
- Right angle: A right angle is exactly equal to 90°.
- Obtuse angle: An angle greater than 90° but less than 180°.
- Straight angle: A straight angle is equal to 180°.
- Reflex angle: An angle that is greater than 180° but less than 360° is called a reflex angle.
- Complementary angles: Two angles whose sum is 90° are called complementary angles. Let one angle be x, then its complementary angle is (90°−x).
- Supplementary angles: Two angles whose sum is 180° are called supplementary angles. Let one angle be x, then its supplementary angle is (180°−x).
- Adjacent angles: Two angles are Adjacent when they have a common side and a common vertex (corner point) and don't overlap.
- Linear pair: A linear pair of angles is formed when two lines intersect. Two angles are said to be linear if they are adjacent angles formed by two intersecting lines. The measure of a straight angle is 180°, so a linear pair of angles must add up to 180°.
- Vertically opposite angles: Vertically opposite angles are formed when two lines intersect each other at a point. Vertically opposite angles are always equal.
Chapter 7: Triangles
Geometrically, a triangle is defined as a three-sided polygon consisting of three edges and three vertices. The most important and applied property of a triangle is its Angle sum property which means the sum of the internal angles of a triangle is equal to 180 degrees only.
This Chapter on Triangles explained the Congruence and various Properties of triangles. This also includes some important theorems for triangles, along with inequalities in a triangle.
CBSE Class 9 Maths Revision Notes Chapter 7 Triangles |
---|
|
- Congruence of Triangles
- SSS Congruence Rule
- SAS Congruence Rule
- ASA Congruence Rule
- AAS Congruence Rule
- RHS Congruence Rule
|
- Why are SSA and AAA congruency rules not valid?
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 7 |
|
Important rules covered in CBSE Class 9 Maths Revision Notes Chapter 7 Triangles are:
Congruence Rules: Here is the list of some important congruence rules of triangles,
- Side angle side (SAS) Congruence
- Angle Side Angle (ASA) Congruence
- Angle angle side (AAS) Congruence
- Side side side (SSS) Congruence
- Right-angle Hypotenuse Side (RHS) Congruence
Chapter 8: Quadrilateral
A quadrilateral is a plane geometrical figure which has four sides and four corners or vertices. Typically, quadrilaterals are rectangles, squares, trapezoids, and kites or irregular and uncharacterized figures with four sides.
The topics covered in this chapter will help students to learn all the concepts of Quadrilateral thoroughly, They are the Angle sum property of a Quadrilateral, types of quadrilaterals, properties of a parallelogram, and the mid-point theorem.
CBSE Class 9 Maths Revision Notes Chapter 8 Quadrilateral |
---|
|
|
|
- Properties of Parallelogram
- Opposite sides of a parallelogram are equal
- Opposite angles in a parallelogram are equal
- Diagonal of a Parallelogram divides it into two congruent triangles
- Diagonals of a Parallelogram bisect each other
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 8 |
|
Important properties that are covered in CBSE Class 9 Maths Revision Notes Chapter 8 Quadrilateral are:
- The Sum of all angles of a quadrilateral is 360°.
- A diagonal of a parallelogram divides it into two congruent triangles.
- In a parallelogram,
- diagonals bisect each other.
- opposite angles are equal.
- opposite sides are equal
- Diagonals of a square bisect each other at right angles and are equal, and vice-versa.
- A line through the mid-point of a side of a triangle parallel to another side bisects the third side. (Midpoint theorem)
- The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the third side.
- In a parallelogram, the bisectors of any two consecutive angles intersect at a right angle.
- If a diagonal of a parallelogram bisect one of the angles of a parallelogram it also bisects the second angle.
- The angle bisectors of a parallelogram form a rectangle.
- Each of the four angles of a rectangle is the right angle.
- The diagonals of a rhombus are perpendicular to each other.
Chapter 9: Areas of Parallelograms and Triangles
The area of a plane figure is described as the amount of the planar surface covered by a closed geometric figure like a rectangle, square, etc. In this chapter, we'll try to strengthen our understanding of the equations for calculating the areas of various figures by looking at relationships between the areas of geometric shapes that have the same base and parallels. This study will also help in the understanding of several findings about 'triangle similarity.'
The important topics covered in this chapter are the area of two or more triangles and parallelograms with the same base between the same parallels and finding the area of triangles that are split by a median as well as the area of congruent figures.
CBSE Class 9 Maths Revision Notes Chapter 9 Parallelogram and Triangles |
---|
|
|
- Theorems
- Parallelograms on the Common Base and Between the Same Parallels
- Triangles on the Common Base and Between the Same Parallels
- Two Triangles Having the Common Base & Equal Areas
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 9 |
|
Important formulas used in CBSE Class 9 Maths Revision Notes Chapter 9 Areas of Parallelograms and Triangles are:
- Area of Parallelogram = Base × Height
- Area of Triangle = 1/2 × Base × Height or 1/2 × Area of Parallelogram
- Area of Trapezium = 1/2 × (Sum of its parallel sides) × Distance between the two parallel side
- Area of Rhombus = 1/2 × Product of its two diagonals
CBSE Class 9 Maths Revision Notes Chapter 9 covers the following topics:
Chapter 10: Circles
Be it a bottle cap or the merry-go-round - the circle is a part of our day-to-day life and is included in everything we saw. But how exactly circle came to be? To explain it in mathematical words, a circle is a geometrical shape that is defined as the locus of points that moves in a plane so that its distance from a fixed point is always constant. This fixed point is the Centre of the circle while the fixed distance from it is called the radius of the circle.
CBSE Class 9 Maths Revision Notes Chapter 10 Circles |
---|
|
|
- Circles and Their Chords
- Theorem of equal chords subtending angles at the center.
- Theorem of equal angles subtended by different chords.
- Perpendicular from the center to a chord bisects the chord.
- A Line through the center that bisects the chord is perpendicular to the chord.
- Circle through 3 points
- Equal chords are at equal distances from the center.
- Chords equidistant from the center are equal.
|
- Angle Subtended by an Arc of a Circle
- The angle subtended by an arc of a circle on the circle and at the center
- Angles in the same segment of a circle.
- The angle subtended by the diameter of the circle
- A line segment that subtends equal angles at two other points
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 10 |
|
Some important properties covered in CBSE Class 9 Maths Revision Notes Chapter 10 Circles are:
Chord: The chord of the circle is a line segment that connects any two locations on a circle. Some important properties of Chords of a circle are:
- The diameter of a circle is defined as a chord that passes across its center.
- A circle's diameter divides it into two equal sections, which are called arcs. A semi-circle is made up of these two arcs.
- If two arcs of a circle have the same degree of measure, they are said to be congruent.
- When two arcs have the same length, their associated chords are likewise the same length.
- The chord is bisected by a perpendicular drawn from the center to the chord of the circle, and vice versa.
- Three non-collinear points are intersected by one and only one circle.
- Equal circle chords are equidistant from the center.
- The line across the centers of two circles intersecting in two points is perpendicular to the common chord.
- An arc's angle at the center of the circle is double the angle it has throughout the rest of the circumference.
- Any two angles in the same circle segment are equal.
- A circle's equal chords form an equal angle at the center.
- The greater chord of a circle is closer to the center than the smaller chord.
- The semicircle has a right angle. At the circle's center, equal chords subtend an equal angle.
Cyclic Quadrilateral: A quadrilateral is said to be cyclic if all of its vertices are on the perimeter of a circle.
- The sum of opposing angles in a cyclic quadrilateral is 180°, and vice versa.
- A cyclic quadrilateral's exterior angle is equal to its inner opposite angle.
CBSE Class 9 Maths Revision Notes Chapter 10 covers the following topics:
Chapter 11: Constructions
Construction helps to understand the approach to constructing different types of triangles for different given conditions using a ruler and compass of required measurements. Constructions are based on Geometry which is the foundation for comprehending fundamental arithmetic principles used in many professions.
Geometry form construction is a necessary ability that necessitates a thorough understanding of their qualities. As a result, students must thoroughly research this subject. The NCERT Solutions Class 9 Maths Chapter 11 Constructions is an excellent resource for learning about this geometry topic. These solutions serve as study aids for students.
CBSE Class 9 Maths Revision Notes Chapter 11 - Constructions |
---|
|
- Basic Construction
- Construction of an Angle Bisector
- Construction of a Perpendicular Bisector of Line
- Construction of Angles
- Construction of an Angle of 60°
- Construction of an Angle of 90°
- Construction of an Angle of 45°
- Construction of an Angle of 75°
|
- Construction of triangles
- Given the base, base angle, and a sum of the other two sides
- Given base(BC), base angle(ABC) and AB-AC
- Given base (BC), base angle (ABC) and AC-AB
- Given the perimeter and two base angles
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 11 |
|
Important constructional rules discussed in CBSE Class 9 Maths Revision Notes Chapter 11 Constructions are:
- Construction of bisector of a line segment
- Construction of bisector of a given angle
- Construction of Equilateral triangle
- Construction of a triangle when its base, sum of the other two sides and one base angle are given
- Construction of a triangle when its base, difference of the other two sides and one base angle are given
- Construction of a triangle of given perimeter and two base angles
Chapter 12: Heron's Formula
In this chapter, a formula called Heron’s formula is introduced which helps to determine the area of the triangle when three sides of it are given. The application of this formula also helps to find the area of other different polygons. Heron’s formula is a useful technique to calculate the area of a triangle when the length of all three sides is given. These Class 9 Maths NCERT Notes Chapter 12 Heron’s Formula will help students to understand this concept in detail.
CBSE Class 9 Maths Revision Notes Chapter 12 Heron's Formula |
---|
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 12 |
|
Important formulas covered in CBSE Class 9 Maths Revision Notes Chapter 12 Heron's Formula are:
- The semi-perimeter of a Triangle, s = (a+b+c)/2
- Area of the triangle = √{s(s−a)(s−b)(s−c)} sq. unit.
Chapter 13: Surface Areas and Volumes
Surface area and volume are the measures calculated for a three-dimensional geometrical shape like a cube, cuboid, sphere, etc. The surface area of any given object is the area occupied by the surface of the object while volume is the amount of space available in an object.
CBSE Class 9 Maths Revision Notes Chapter 13 Surface Areas and Volumes |
---|
- Surface Area and Volume of Cuboid
|
- Surface Area and Volume of Cube
|
- Surface Area and Volume of Cylinder
|
- Surface Area and Volume of Right Circular Cone
|
- Surface Area and Volume of Sphere
|
- Surface Area and Volume of Hemisphere
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 13 |
|
Some important formulas in CBSE Class 9 Maths Revision Notes Chapter 13 Surface Areas and Volumes are:
- TSA of a Cuboid = 2(l x b) +2(b x h) +2(h x l)
- TSA of a Cube = 6a2
- TSA of a Right circular Cylinder = 2πr(h+r)
- TSA of a Right circular Cone = πr(l+r)
- TSA of a Sphere = 4πr2
- CSA of a Cuboid = 2h(l+b)
- CSA of a Cube = 4a2
- CSA of a Right circular Cylinder = 2πrh
- CSA of a Right circular Cone = πrl
- Volume of a Cuboid = l x b x h
- Volume of a Cube = a3
- Volume of a Right circular Cylinder = πr2h
- Volume of a Right circular Cone = 1/3πr2h
- Volume of a Sphere = 4/3πr3
Here, l is the length, b is the breadth, h is the height, r is the radius and a is the side of the respective geometrical figure.
CBSE Class 9 Maths Revision Notes Chapter 13 covers the following topics:
Chapter 14: Statistics
Statistics is the study of the representation, collection, interpretation, analysis, presentation, and organization of data. In other words, it is a mathematical way to collect and summarize data. The representation of data is different along with the frequency distribution.
Students will have a good understanding of the significance of well-organized data, as well as the three measures of central tendency for ungrouped data, namely, mean, median, and mode, from NCERT notes for class 9 Mathematics chapter 14. After studying this topic, students will be able to apply these formulae to a wide range of problems.
CBSE Class 9 Maths Notes - Chapter 14 Statistics |
---|
|
- Frequency Distribution Table
- Ungrouped Frequency Distribution Table
- Grouped Frequency Distribution Table
|
|
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 14 |
|
Some important formulae and terms studied in CBSE Class 9 Maths Revision Notes Chapter 14 Statistics are
- Class mark = (Lower Limit + Upper Limit)/2
- The three central tendencies are measured as:
- Mean (x‾) = Sum of all observations (∑xn) / Total Number of observation (N)
- Median = The median for even number of observation is equal to the middlemost observation whole for the odd number of observation it is equal to value of ((n+1)/2)th observation.
- Mode = It is equal to observation which occurs the most or have the maximum frequency in the given data.
Chapter 15: Probability
Tossing coin yields either an up or a down result, which is easily predicted. But what if you toss two coins at once? The end product might be a head and tail combo. In the latter instance, the correct answer cannot be found, therefore only the probability of a result may be predicted. Probability is the name given to this prediction. Probability is frequently employed in all aspects of daily life, such as sports, weather forecasts, blood tests, statics, etc. In this chapter, we will study probability in-depth.
The Probability in this class includes basic probability theory, which is also used in the probability distribution, to learn the possibility of outcomes for a random experiment and to find the probability of a single event to occur, when the total number of possible outcomes
CBSE Class 9 Maths Revision Notes Chapter 15 Probability |
---|
|
|
|
|
|
- Rolling of Dice Experiment
|
- Sum of Probabilities of Favorable and Unfavourable Events
|
More Resources for CBSE Class 9th Maths Revision Notes Chapter 15 |
|
Important terms used in CBSE Class 9 Maths Revision Notes Chapter 15 Probability are:
- Probability P (E) = Number of favorable outcomes / Total Number of outcomes
- The probability of any event only lies between 1 and 0.
- Trial: It is defined as the set of observations of event in which one or more outcomes are observed.
- Event: It is defined as the collection of observation performed to observe an experiment.
CBSE Class 9 Maths Revision Notes Chapter 15 covers the following topics:
Important Resources for CBSE Class 9th provided by GeeksforGeeks
Similar Reads
Maths Mathematics, often referred to as "math" for short. It is the study of numbers, quantities, shapes, structures, patterns, and relationships. It is a fundamental subject that explores the logical reasoning and systematic approach to solving problems. Mathematics is used extensively in various fields
5 min read
Basic Arithmetic
What are Numbers?Numbers are symbols we use to count, measure, and describe things. They are everywhere in our daily lives and help us understand and organize the world.Numbers are like tools that help us:Count how many things there are (e.g., 1 apple, 3 pencils).Measure things (e.g., 5 meters, 10 kilograms).Show or
15+ min read
Arithmetic OperationsArithmetic Operations are the basic mathematical operationsâAddition, Subtraction, Multiplication, and Divisionâused for calculations. These operations form the foundation of mathematics and are essential in daily life, such as sharing items, calculating bills, solving time and work problems, and in
9 min read
Fractions - Definition, Types and ExamplesFractions are numerical expressions used to represent parts of a whole or ratios between quantities. They consist of a numerator (the top number), indicating how many parts are considered, and a denominator (the bottom number), showing the total number of equal parts the whole is divided into. For E
7 min read
What are Decimals?Decimals are numbers that use a decimal point to separate the whole number part from the fractional part. This system helps represent values between whole numbers, making it easier to express and measure smaller quantities. Each digit after the decimal point represents a specific place value, like t
10 min read
ExponentsExponents are a way to show that a number (base) is multiplied by itself many times. It's written as a small number (called the exponent) to the top right of the base number.Think of exponents as a shortcut for repeated multiplication:23 means 2 x 2 x 2 = 8 52 means 5 x 5 = 25So instead of writing t
9 min read
PercentageIn mathematics, a percentage is a figure or ratio that signifies a fraction out of 100, i.e., A fraction whose denominator is 100 is called a Percent. In all the fractions where the denominator is 100, we can remove the denominator and put the % sign.For example, the fraction 23/100 can be written a
5 min read
Algebra
Variable in MathsA variable is like a placeholder or a box that can hold different values. In math, it's often represented by a letter, like x or y. The value of a variable can change depending on the situation. For example, if you have the equation y = 2x + 3, the value of y depends on the value of x. So, if you ch
5 min read
Polynomials| Degree | Types | Properties and ExamplesPolynomials are mathematical expressions made up of variables (often represented by letters like x, y, etc.), constants (like numbers), and exponents (which are non-negative integers). These expressions are combined using addition, subtraction, and multiplication operations.A polynomial can have one
9 min read
CoefficientA coefficient is a number that multiplies a variable in a mathematical expression. It tells you how much of that variable you have. For example, in the term 5x, the coefficient is 5 â it means 5 times the variable x.Coefficients can be positive, negative, or zero. Algebraic EquationA coefficient is
8 min read
Algebraic IdentitiesAlgebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Properties of Algebraic OperationsAlgebraic operations are mathematical processes that involve the manipulation of numbers, variables, and symbols to produce new results or expressions. The basic algebraic operations are:Addition ( + ): The process of combining two or more numbers to get a sum. For example, 3 + 5 = 8.Subtraction (â)
3 min read
Geometry
Lines and AnglesLines and Angles are the basic terms used in geometry. They provide a base for understanding all the concepts of geometry. We define a line as a 1-D figure that can be extended to infinity in opposite directions, whereas an angle is defined as the opening created by joining two or more lines. An ang
9 min read
Geometric Shapes in MathsGeometric shapes are mathematical figures that represent the forms of objects in the real world. These shapes have defined boundaries, angles, and surfaces, and are fundamental to understanding geometry. Geometric shapes can be categorized into two main types based on their dimensions:2D Shapes (Two
2 min read
Area and Perimeter of Shapes | Formula and ExamplesArea and Perimeter are the two fundamental properties related to 2-dimensional shapes. Defining the size of the shape and the length of its boundary. By learning about the areas of 2D shapes, we can easily determine the surface areas of 3D bodies and the perimeter helps us to calculate the length of
10 min read
Surface Areas and VolumesSurface Area and Volume are two fundamental properties of a three-dimensional (3D) shape that help us understand and measure the space they occupy and their outer surfaces.Knowing how to determine surface area and volumes can be incredibly practical and handy in cases where you want to calculate the
10 min read
Points, Lines and PlanesPoints, Lines, and Planes are basic terms used in Geometry that have a specific meaning and are used to define the basis of geometry. We define a point as a location in 3-D or 2-D space that is represented using coordinates. We define a line as a geometrical figure that is extended in both direction
14 min read
Coordinate Axes and Coordinate Planes in 3D spaceIn a plane, we know that we need two mutually perpendicular lines to locate the position of a point. These lines are called coordinate axes of the plane and the plane is usually called the Cartesian plane. But in real life, we do not have such a plane. In real life, we need some extra information su
6 min read
Trigonometry & Vector Algebra
Trigonometric RatiosThere are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
4 min read
Trigonometric Equations | Definition, Examples & How to SolveTrigonometric equations are mathematical expressions that involve trigonometric functions (such as sine, cosine, tangent, etc.) and are set equal to a value. The goal is to find the values of the variable (usually an angle) that satisfy the equation.For example, a simple trigonometric equation might
9 min read
Trigonometric IdentitiesTrigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
10 min read
Trigonometric FunctionsTrigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
6 min read
Inverse Trigonometric Functions | Definition, Formula, Types and Examples Inverse trigonometric functions are the inverse functions of basic trigonometric functions. In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric function
11 min read
Inverse Trigonometric IdentitiesInverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. These functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inv
9 min read
Calculus
Introduction to Differential CalculusDifferential calculus is a branch of calculus that deals with the study of rates of change of functions and the behaviour of these functions in response to infinitesimal changes in their independent variables.Some of the prerequisites for Differential Calculus include:Independent and Dependent Varia
6 min read
Limits in CalculusIn mathematics, a limit is a fundamental concept that describes the behaviour of a function or sequence as its input approaches a particular value. Limits are used in calculus to define derivatives, continuity, and integrals, and they are defined as the approaching value of the function with the inp
12 min read
Continuity of FunctionsContinuity of functions is an important unit of Calculus as it forms the base and it helps us further to prove whether a function is differentiable or not. A continuous function is a function which when drawn on a paper does not have a break. The continuity can also be proved using the concept of li
13 min read
DifferentiationDifferentiation in mathematics refers to the process of finding the derivative of a function, which involves determining the rate of change of a function with respect to its variables.In simple terms, it is a way of finding how things change. Imagine you're driving a car and looking at how your spee
2 min read
Differentiability of a Function | Class 12 MathsContinuity or continuous which means, "a function is continuous at its domain if its graph is a curve without breaks or jumps". A function is continuous at a point in its domain if its graph does not have breaks or jumps in the immediate neighborhood of the point. Continuity at a Point: A function f
11 min read
IntegrationIntegration, in simple terms, is a way to add up small pieces to find the total of something, especially when those pieces are changing or not uniform.Imagine you have a car driving along a road, and its speed changes over time. At some moments, it's going faster; at other moments, it's slower. If y
3 min read
Probability and Statistics
Basic Concepts of ProbabilityProbability is defined as the likelihood of the occurrence of any event. It is expressed as a number between 0 and 1, where 0 is the probability of an impossible event and 1 is the probability of a sure event.Concepts of Probability are used in various real life scenarios : Stock Market : Investors
7 min read
Bayes' TheoremBayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba
13 min read
Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows
13 min read
Descriptive StatisticStatistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
5 min read
What is Inferential Statistics?Inferential statistics is an important tool that allows us to make predictions and conclusions about a population based on sample data. Unlike descriptive statistics, which only summarize data, inferential statistics let us test hypotheses, make estimates, and measure the uncertainty about our predi
7 min read
Measures of Central Tendency in StatisticsCentral tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
11 min read
Set TheorySet theory is a branch of mathematics that deals with collections of objects, called sets. A set is simply a collection of distinct elements, such as numbers, letters, or even everyday objects, that share a common property or rule.Example of SetsSome examples of sets include:A set of fruits: {apple,
3 min read
Practice