The greatest frequency in the given table is 23, so the modal class = 35 – 45,
l = 35,
Class width = 10, and the frequencies are
fm = 23, f1 = 21 and f2 = 14
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 35+\left[\frac{(23-21)}{(46-21-14)}\right]×10
= 35 + (20/11) = 35 + 1.8
= 36.8
Hence, the mode of the given data is 36.8 year
Now, we find the mean. So for that first we need to find the midpoint.
xi = (upper limit + lower limit)/2
Class Interval | Frequency (fi) | Mid-point (xi) | fixi |
5-15 | 6 | 10 | 60 |
15-25 | 11 | 20 | 220 |
25-35 | 21 | 30 | 630 |
35-45 | 23 | 40 | 920 |
45-55 | 14 | 50 | 700 |
55-65 | 5 | 60 | 300 |
| Sum fi = 80 | | Sum fixi = 2830 |
Mean = \bar{x} = ∑fixi /∑fi
= 2830/80
= 35.37 years
According to the given question
The modal class is 60 – 80
l = 60, and the frequencies are
fm = 61, f1 = 52, f2 = 38 and h = 20
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 60+\left[\frac{(61-52)}{(122-52-38)}\right]×20
= 60+\frac{(9 \times 20)}{32}
= 60 + 45/8 = 60 + 5.625
Hence, the modal lifetime of the components is 65.625 hours.
According to the question
Modal class = 1500-2000,
l = 1500,and the frequencies are
fm = 40 f1 = 24, f2 = 33 and
h = 500
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 1500+\left[\frac{(40-24)}{(80-24-33)}\right]×500
= 1500+\frac{16×500}{23}
= 1500 + 8000/23 = 1500 + 347.83
So, the modal monthly expenditure of the families is 1847.83 Rupees
Now, we find the mean. So for that first we need to find the midpoint.
xi = (upper limit + lower limit)/2
Let us considered a mean, A be 2750
Class Interval | fi | xi | di = xi – a | ui = di/h | fiui |
1000-1500 | 24 | 1250 | -1500 | -3 | -72 |
1500-2000 | 40 | 1750 | -1000 | -2 | -80 |
2000-2500 | 33 | 2250 | -500 | -1 | -33 |
2500-3000 | 28 | 2750 | 0 | 0 | 0 |
3000-3500 | 30 | 3250 | 500 | 1 | 30 |
3500-4000 | 22 | 3750 | 1000 | 2 | 44 |
4000-4500 | 16 | 4250 | 1500 | 3 | 48 |
4500-5000 | 7 | 4750 | 2000 | 4 | 28 |
| fi = 200 | | | | fiui = -35 |
Mean = \overline{x} = a +\frac{∑f_iu_i}{∑f_i}×h
On substituting the values in the given formula
= 2750+\frac{-35}{200}×500
= 2750 - 87.50
= 2662.50
Hence, the mean monthly expenditure of the families is 2662.50 Rupees
According to the question
Modal class = 30 – 35,
l = 30,
Class width (h) = 5, and the frequencies are
fm = 10, f1 = 9 and f2 = 3
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 30+\frac{(10-9)}{(20-9-3)}×5
= 30 + 5/8 = 30 + 0.625
= 30.625
Hence, the mode of the given data is 30.625
Now, we find the mean. So for that first we need to find the midpoint.
xi = (upper limit + lower limit)/2
Class Interval | Frequency (fi) | Mid-point (xi) | fixi |
15-20 | 3 | 17.5 | 52.5 |
20-25 | 8 | 22.5 | 180.0 |
25-30 | 9 | 27.5 | 247.5 |
30-35 | 10 | 32.5 | 325.0 |
35-40 | 3 | 37.5 | 112.5 |
40-45 | 0 | 42.5 | 0 |
45-50 | 0 | 47.5 | 0 |
50-55 | 2 | 52.5 | 105.5 |
| Sum fi = 35 | | Sum fixi = 1022.5 |
Mean = \bar{x} = \frac{∑f_ix_i }{∑f_i}
= 1022.5/35
= 29.2
Hence, the mean is 29.2
According to the question
Modal class = 4000 – 5000,
l = 4000,
class width (h) = 1000, and the frequencies are
fm = 18, f1 = 4 and f2 = 9
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 4000+\frac{(18-4)}{(36-4-9)}×1000
Mode = 4000 + 14000/23 = 4000 + 608.695
= 4608.695
Hence, the mode of the given data is 4608.7 runs
According to the question
Modal class = 40 – 50, l = 40,
Class width (h) = 10, and the frequencies are
fm = 20, f1 = 12 and f2 = 11
Now, we find the mode using the given formula
Mode = l+ \left[\frac{(f_m-f_1)}{(2f_m-f_1-f_2)}\right]×h
On substituting the values in the formula, we get
Mode = 40+\frac{(20-12)}{(40-12-11)}×10
Mode = 40 + 80/17 = 40 + 4.7 = 44.7
Hence, the mode of the given data is 44.7 cars