P(A) = {∅,
{a}, {e}, {i}, {o}, {u},
{a, e}, {a, i}, {a, o}, {a, u}, {e, i}, {e, o}, {e, u}, {i, o}, {i, u}, {o, u},
{a, e, i}, {a, e, o}, {a, e, u}, {a, i, o}, {a, i, u}, {a, o, u}, {e, i, o}, {e, i, u}, {e, o, u}, {i, o, u},
{a, e, i, o}, {a, e, i, u}, {a, e, o, u}, {a, i, o, u}, {e, i, o, u},
{a, e, i, o, u}}
Since power set contains all possible subset for the given set including the null or empty set.
Therefore Power set of A , P(A) = {∅, {9}, {18}, {5}, {6}, {9, 18}, {9, 5}, {9, 6}, {18, 5}, {18, 6}, {5, 6}, {9, 18, 5}, {9, 18, 6}, {9, 5, 6}, {18, 5, 6}, {9, 18, 5, 6} }
So, the power set of set A = {9, 18, 5, 6} contains 2^4 = 16 elements or subsets.