Session 4 New data sources for small area estimation

Discussion

M. Giovanna Ranalli¹

¹Dip. Scienze Politiche, Università degli Studi di Perugia

Third Workshop on Methodologies for Official Statistics ISTAT — Rome, 4-5 December 2024

Outline

- 1 Overview of the two papers
- Official statistics: Bayesian Small Area Estimation of Origin-Destination Matrix
 - Loredana Di Consiglio, Fabrizio Solari, Emanuela Scavalli Massimo Armenise, Carolina Ciccaglioni, Isabella Corazziari, Tiziana Pichiorri, Lorenzo Asti, Luca Faustini — Istat, Italy
- Ontrolling selection bias in non-probability sample using small area estimation: an application to official statistics
 - Francesco Schirripa Spagnolo, Gaia Bertarelli, Nicola Salvati,
 Stefano Marchetti Università di Pisa, Italy; Monica Pratesi —
 Istat and Università di Pisa, Italy; Donato Summa Istat, Italy;
 Monica Scannapieco Agenzia per la cybersecurity, Italy.

The two papers

Similarities

- Use Small Area Estimation methods for "non-standard" SAE inferential problems
- Small Areas, but Large number of Authors

Differences

- Work in progress vs. published paper
- Bayesian vs Frequentist approach

Outline

- Overview of the two papers
- Official statistics: Bayesian Small Area Estimation of Origin-Destination Matrix
 - Loredana Di Consiglio, Fabrizio Solari, Emanuela Scavalli Massimo Armenise, Carolina Ciccaglioni, Isabella Corazziari, Tiziana Pichiorri, Lorenzo Asti, Luca Faustini — Istat, Italy
- 3 Controlling selection bias in non-probability sample using small area estimation: an application to official statistics
 - Francesco Schirripa Spagnolo, Gaia Bertarelli, Nicola Salvati,
 Stefano Marchetti Università di Pisa, Italy; Monica Pratesi
 Istat and Università di Pisa, Italy; Donato Summa —
 Istat, Italy; Monica Scannapieco Agenzia per la cybersecurity, Italy.

Inferential target: origin-destination (O-D) Matrix

$$M_{ij} = N_i m_{ij},$$

commuting rates m_{ij} are the parameters of interest N_i is the number of employed individuals in location i

- Sparse problem \rightarrow small areas: cells ij Italian Provinces (NUTS3) 107×107 (38 × 107 in the application)

Inferential target: origin-destination (O-D) Matrix

$$M_{ij} = N_i m_{ij},$$

commuting rates m_{ij} are the parameters of interest N_i is the number of employed individuals in location i

- Sparse problem \rightarrow small areas: cells ij Italian Provinces (NUTS3) 107×107 (38 × 107 in the application)
- Survey data from the Permanent Census
- Auxiliary data
 - Q_{ij} is the number of potential commuting journeys from Tax registers $\rightarrow q_{ij} = Q_{ij}/N_i$
 - Previous m_{ij} 's from 2011 Census.

Modeling approaches

- Fay-Herriot area-level model (FH)
- The assumption of a common variance σ_u^2 should be relaxed
 - Spike-n-slab (SS): $\delta_{ij}\sigma_u^2$, where δ_{ij} is a Bernoulli rv with probability θ
 - Global-Local (GL): $\lambda_{ij}^2 \sigma_u^2$ with many choices of prior distributions for the local parameter
- The ability of q_{ij} to detect true commuters is a function of the distance between origin and destination locations
 - $z_{ij} = q_{ij}/d_{ij}^p$, p = 0, 1, 2
 - the effect of z_{ij} could be modeled by splines (in the paper but not pursued in the application)

Modeling approaches

- Fay-Herriot area-level model (FH)
- The assumption of a common variance σ_u^2 should be relaxed
 - Spike-n-slab (SS): $\delta_{ij}\sigma_u^2$, where δ_{ij} is a Bernoulli rv with probability θ
 - Global-Local (GL): $\lambda_{ij}^2 \sigma_u^2$ with many choices of prior distributions for the local parameter
- The ability of q_{ij} to detect true commuters is a function of the distance between origin and destination locations
 - $z_{ij} = q_{ij}/d_{ij}^p$, p = 0, 1, 2
 - the effect of z_{ij} could be modeled by splines (in the paper but not pursued in the application)

Suggestions/ideas

- Gaussian assumption for commuting rates, which can be small: test for transformations
- What about modelling counts M_{ij} 's directly accounting for constraints $\sum_i M_{ij} = N_i$?
- ullet In the need of setting many random effects to zero o Lasso or SSL?
- In SS, is it possible to have $P(\delta_{ij} = 1)$ to depend on d_{ij} ?
- To relax common σ_u^2 (and also common β), a mixture model can be considered in which

$$m_{ij}|\boldsymbol{x}_{ij}, C_{ij} = c \sim N(\boldsymbol{x}_{ij}^T \boldsymbol{\beta}_c, \sigma_c^2)$$

for $c=1,\ldots,k$, and k is the number of groups/latent classes. The probability $P(C_{ij}=c)$ can depend on covariates.

• In case you pursue the use of p-splines, Demmler-Reinsch orthogonalization for the matrix $[Z_1Z_2]$ should be used to help

M. Giovanna Ranalli

p. Scienze Politiche, Università degli Studi di Perugi

Suggestions/ideas

- Gaussian assumption for commuting rates, which can be small: test for transformations
- What about modelling counts M_{ij}'s directly accounting for constraints $\sum_{i} M_{ij} = N_{i}$?
- In the need of setting many random effects to zero \rightarrow Lasso or SSL?
- In SS, is it possible to have $P(\delta_{ij} = 1)$ to depend on d_{ij} ?
- To relax common σ_u^2 (and also common β), a mixture model can be considered in which

$$m_{ij}|\boldsymbol{x}_{ij}, C_{ij} = c \sim N(\boldsymbol{x}_{ij}^T\boldsymbol{\beta}_c, \sigma_c^2)$$

for $c = 1, \dots, k$, and k is the number of groups/latent classes. The probability $P(C_{ij} = c)$ can depend on covariates.

口 > 《圖》《意》《意》

Suggestions/ideas

- Gaussian assumption for commuting rates, which can be small: test for transformations
- What about modelling counts M_{ij} 's directly accounting for constraints $\sum_i M_{ij} = N_i$?
- In the need of setting many random effects to zero → Lasso or SSL?
- In SS, is it possible to have $P(\delta_{ij} = 1)$ to depend on d_{ij} ?
- To relax common σ_u^2 (and also common β), a mixture model can be considered in which

$$m_{ij}|\boldsymbol{x}_{ij}, C_{ij} = c \sim N(\boldsymbol{x}_{ij}^T \boldsymbol{\beta}_c, \sigma_c^2)$$

for $c=1,\ldots,k$, and k is the number of groups/latent classes. The probability $P(C_{ij}=c)$ can depend on covariates.

• In case you pursue the use of p-splines, Demmler-Reinsch orthogonalization for the matrix $[Z_1Z_2]$ should be used to help proper mixing of chains

M. Giovanna Ranalli

Politiche, Università degli Studi di Perugi

Outline

- Overview of the two papers
- Official statistics: Bayesian Small Area Estimation of Origin-Destination Matrix
 - Loredana Di Consiglio, Fabrizio Solari, Emanuela Scavalli Massimo Armenise, Carolina Ciccaglioni, Isabella Corazziari, Tiziana Pichiorri, Lorenzo Asti, Luca Faustini — Istat, Italy
- 3 Controlling selection bias in non-probability sample using small area estimation: an application to official statistics
 - Francesco Schirripa Spagnolo, Gaia Bertarelli, Nicola Salvati, Stefano Marchetti — Università di Pisa, Italy; Monica Pratesi — Istat and Università di Pisa, Italy; Donato Summa — Istat, Italy; Monica Scannapieco — Agenzia per la cybersecurity, Italy.

- Estimating the proportion of Italian Enterprises sensitive of SDGs at provincial (NUTS3) level.
- Bias Correction of the estimates from a non-probability sample B for small domains using a probability sample A.
- Target variable comes only from Big Data source B
- The domains are small in the probability sample A
- Doubly robust approach: IPW + Mass imputation
- The selection mechanism of the big data sample is ignorable
- SAE "flavour" in both models

- Estimating the proportion of Italian Enterprises sensitive of SDGs at provincial (NUTS3) level.
- Bias Correction of the estimates from a non-probability sample B for small domains using a probability sample A.
- Target variable comes only from Big Data source B
- The domains are small in the probability sample A
- Doubly robust approach: IPW + Mass imputation
- The selection mechanism of the big data sample is ignorable
- SAE "flavour" in both models

Things I would have asked if I were a Referee

- Binary target variable: why the naive approach is used instead of FBP?
- Which is the predictive power of the predictors for both models? Is it comparable to that in the simulations?
- Small n_{Bi} : IPW for areas that are small also in the Big Data source: can this be an issue in terms of extra variability?
- Simulations: it would be interesting to disentangle the role of IPW and Mass Imputation → performance of Mass Imputation only and of IPW only?

Things I would have asked if I were a Referee

- Binary target variable: why the naive approach is used instead of FBP?
- Which is the predictive power of the predictors for both models? Is it comparable to that in the simulations?
- Small n_{Bi} : IPW for areas that are small also in the Big Data source: can this be an issue in terms of extra variability?
- Simulations: it would be interesting to disentangle the role of IPW and Mass Imputation → performance of Mass Imputation only and of IPW only?

Bootstrap

- Joint Model-based / Design-based variance
- ?? Step 1: Extract a sample of size n_A from sample A using the inclusion probabilities π_{ij}
 - Step 1 needs to follow standard practice in survey sampling on creating replication weights for design-based variance estimation, e.g. using Rao-Wu or other FP bootstrap methods. How was it performed?
- ?? Step 2: Why SRS? Is Step 3 enough to account for IPW?
 - The proposal is DR and does not rely on Mass Imputation only: explore and exploit all the literature on non-response IPW (two-phase approach using Poisson).

Bootstrap

- Joint Model-based / Design-based variance
- ?? Step 1: Extract a sample of size n_A from sample A using the inclusion probabilities π_{ij}
 - Step 1 needs to follow standard practice in survey sampling on creating replication weights for design-based variance estimation, e.g. using Rao-Wu or other FP bootstrap methods. How was it performed?
- ?? Step 2: Why SRS? Is Step 3 enough to account for IPW?
 - The proposal is DR and does not rely on Mass Imputation only: explore and exploit all the literature on non-response IPW (two-phase approach using Poisson).

Schirripa Spagnolo, Bertarelli, Salvati, Marchetti, Pratesi, Summa, Scannapiec

Title of Session 4: a little twist

New data sources for small area estimation

Small area estimation for new data sources

Schirripa Spagnolo, Bertarelli, Salvati, Marchetti, Pratesi, Summa, Scannapiec

Title of Session 4: a little twist

New data sources for small area estimation

 \Downarrow

Small area estimation for new data sources