How to Integrate AI with IoT for Predictive Maintenance

View profile for Dulakshi Jayamaha

Founder @Dexova Intelligence | AI & Data Scientist | Building smarter tools for real business impact

𝗜𝗼𝗧 𝗱𝗲𝘃𝗶𝗰𝗲𝘀 𝗰𝗮𝗽𝘁𝘂𝗿𝗲 𝗱𝗮𝘁𝗮. 𝗔𝗜/𝗠𝗟 𝗺𝗮𝗸𝗲𝘀 𝗶𝘁 𝗶𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝘁. Huge thanks to Dr. Katerina Stamou, PhD (PhD in Blood flow modelling), for an insightful workshop on “𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗻𝗴 𝗠𝗤𝗧𝗧 𝘄𝗶𝘁𝗵 𝗔𝗜/𝗠𝗟”! It gave me fresh perspectives on turning raw sensor streams into actionable intelligence, especially for 𝗽𝗿𝗲𝗱𝗶𝗰𝘁𝗶𝘃𝗲 𝗺𝗮𝗶𝗻𝘁𝗲𝗻𝗮𝗻𝗰𝗲. 𝗠𝘆 𝗸𝗲𝘆 𝘁𝗮𝗸𝗲𝗮𝘄𝗮𝘆𝘀:  • IoT without AI = “data exhaust.”  • AI without IoT = models sitting idle.  • Together = powerful insights and automation. 𝗨𝘀𝗲 𝗰𝗮𝘀𝗲𝘀: 🔹 Predictive Maintenance: proactively schedule maintenance using sensor insights 🔹 Anomaly Detection: identify unexpected patterns for safety and efficiency 🔹 Smart Automation: trigger immediate actions from data One question that really got me thinking: should ML models for IoT run on the edge for speed, or in the cloud for computational power? In practice, it’s not just “edge vs cloud”—it’s about smartly partitioning the ML pipeline: ⚡ 𝗘𝗱𝗴𝗲: preprocessing, feature extraction, latency-critical inference ☁️ 𝗖𝗹𝗼𝘂𝗱: deep learning, fleet-level insights, model retraining 𝗠𝗤𝗧𝗧’𝘀 𝗿𝗼𝗹𝗲: the efficient highway carrying raw data where needed, condensed insights where possible to save bandwidth. 𝗘𝘅𝗮𝗺𝗽𝗹𝗲: In aviation predictive maintenance, should edge devices detect anomalies onboard, or should raw sensor data go to the cloud first for validation and inference? 𝘈𝘵𝘵𝘢𝘤𝘩𝘦𝘥 𝘢𝘳𝘦 𝘮𝘺 𝘵𝘢𝘬𝘦𝘢𝘸𝘢𝘺𝘴 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘸𝘰𝘳𝘬𝘴𝘩𝘰𝘱. 💡 I’d love to hear how others in AI/IoT tackle pipeline partitioning, MQTT design, and edge/cloud tradeoffs — especially in real-world predictive maintenance scenarios. #MQTT #IoT #AI #PredictiveMaintenance #MachineLearning #EdgeComputing #CloudComputing #DataScience

Katerina Stamou, PhD (PhD in Blood flow modelling)

Lecturer (Teaching) in Computer Science, Coventry University

1w

Hello Dear Dulakshi Jayamaha It has been my Greatest Please to transfer you my integrating MQTT + AI/ML experience whilst showing you ways to modl/ turn raw sensor streams into actionable intelligences :) I am ALWAYS HERE FOR YOU!!! Please Bear it in mind!!! I am Always Very Happy to discuss with you on your Final Year Project! Please Grasp the chance to get to see me in office hour these days that I am at NIBM and we will definitely continue our conversation online. i hope this helps!!!

To view or add a comment, sign in

Explore content categories