Azure Data Factory, Databricks, Synapse Analytics: A Complete Cloud Data Solution

View profile for Shai Prabu D

Senior Power BI Developer / Data Analyst / Data Scientist | Power BI, SQL & Python Proficient | PL-300 & DP-600 Certified | 4+ Years in Business Intelligence

🚀 𝐀𝐳𝐮𝐫𝐞 𝐃𝐚𝐭𝐚 𝐅𝐚𝐜𝐭𝐨𝐫𝐲, 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬 & 𝐒𝐲𝐧𝐚𝐩𝐬𝐞 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 – 𝐄𝐧𝐝 𝐭𝐨 𝐄𝐧𝐝 𝐃𝐚𝐭𝐚 𝐏𝐨𝐰𝐞𝐫𝐡𝐨𝐮𝐬𝐞 ☁️📊 In today’s 𝐜𝐥𝐨𝐮𝐝 𝐝𝐫𝐢𝐯𝐞𝐧 𝐝𝐚𝐭𝐚 𝐥𝐚𝐧𝐝𝐬𝐜𝐚𝐩𝐞, these three Azure services form the backbone of modern analytics: 🔹 𝐀𝐳𝐮𝐫𝐞 𝐃𝐚𝐭𝐚 𝐅𝐚𝐜𝐭𝐨𝐫𝐲 (ADF) ➡️ 𝐑𝐨𝐥𝐞: Data integration & orchestration ➡️ 𝐔𝐬𝐞: Builds pipelines, moves & transforms data across sources 🔹 𝐃𝐚𝐭𝐚𝐛𝐫𝐢𝐜𝐤𝐬 ➡️ 𝐑𝐨𝐥𝐞: Big data, ML & advanced analytics ➡️ 𝐔𝐬𝐞: Cleansing, transformations, AI/ML, batch & streaming 🔹 𝐒𝐲𝐧𝐚𝐩𝐬𝐞 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 ➡️ 𝐑𝐨𝐥𝐞: Unified analytics & warehousing ➡️ 𝐔𝐬𝐞: Querying, reporting, BI dashboards, large scale SQL & Spark ⚖️ 𝐊𝐞𝐲 𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 📌 ADF → Best for data movement, ETL pipelines 📌 Databricks → Best for large scale processing, AI/ML workloads 📌 Synapse → Best for warehousing, SQL-based analytics & BI 🛠️ 𝐇𝐨𝐰 𝐓𝐡𝐞𝐲 𝐖𝐨𝐫𝐤 𝐓𝐨𝐠𝐞𝐭𝐡𝐞𝐫 (𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝐖𝐨𝐫𝐤𝐟𝐥𝐨𝐰) 1️⃣ ADF Pipeline → Ingests raw sales data from multiple sources → lands into Azure Data Lake 2️⃣ Databricks Notebook → Cleanses, aggregates & runs ML models on data 3️⃣ ADF Transfers Output → Moves the processed data into Synapse 4️⃣ Synapse Analytics → Powers BI dashboards, reporting & advanced queries 📊 𝐑𝐞𝐬𝐮𝐥𝐭: A seamless workflow delivering flexible orchestration + scalable processing + unified analytics 💡 🌟 𝐒𝐮𝐦𝐦𝐚𝐫𝐲 ADF = Pipelines & integration 🔄 Databricks = Big data & ML 🧠 Synapse = Analytics & reporting 📈 Together → They form a complete cloud data solution 🚀 💬 What’s your favorite combo for handling big data pipelines in Azure – ADF + Databricks or ADF + Synapse? #️⃣ #Azure #DataFactory #Databricks #SynapseAnalytics #CloudComputing #DataEngineering #BigData #BusinessIntelligence

  • No alternative text description for this image

To view or add a comment, sign in

Explore content categories