How to handle schema changes in data ingestion with Smart Partition Evolution

View profile for Venkata Krishna

Strategic Data Leader| Data Architect/BI Manager| Data Scientist| Driving Enterprise-Scale Data Solutions with Azure,Power BI,Tableau,SQL,Python,Bigdata,ADF,ADB,Fabric,Pyspark,ML, Statistics| Data Governance & Quality

𝑫𝒂𝒕𝒂 𝑰𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆: 𝑺𝒄𝒉𝒆𝒎𝒂-𝑨𝒘𝒂𝒓𝒆 𝑰𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝑰𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝑺𝒎𝒂𝒓𝒕 𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝑬𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝐂𝐨𝐧𝐜𝐞𝐩𝐭: Instead of reloading entire datasets or relying solely on timestamp-based incremental loads, this approach tracks schema versions and adapts partition structures dynamically to handle schema drift (new columns, data type changes) without breaking ingestion pipelines. 𝐖𝐡𝐲 𝐈𝐭’𝐬 𝐔𝐧𝐢𝐪𝐮𝐞 Most pipelines fail or require manual intervention when source schema changes (e.g., a new column added in ERP or IoT feeds). This technique enables continuous ingestion with automatic schema handling. 𝐇𝐨𝐰 𝐈𝐭 𝐖𝐨𝐫𝐤𝐬 𝟏. 𝐒𝐜𝐡𝐞𝐦𝐚 𝐑𝐞𝐠𝐢𝐬𝐭𝐫𝐲: Maintain a schema registry (e.g., Confluent Schema Registry, Azure Purview, Glue Data Catalog) that stores each version of the source schema. 𝟐. 𝐈𝐧𝐠𝐞𝐬𝐭𝐢𝐨𝐧 𝐋𝐚𝐲𝐞𝐫: Compare incoming data’s schema with the latest registered schema. If a difference is detected: Evolve partitions dynamically (e.g., add a new column with default/null value). Update schema registry with a new version. 𝟑. 𝐏𝐚𝐫𝐭𝐢𝐭𝐢𝐨𝐧 𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Instead of static partitioning, dynamically adjust partitions based on new fields or business rules (e.g., year/month/day + region + new_attribute). 𝟒. 𝐃𝐚𝐭𝐚 𝐋𝐚𝐤𝐞 𝐖𝐫𝐢𝐭𝐢𝐧𝐠 𝐌𝐨𝐝𝐞: Use formats supporting schema evolution (e.g., Delta Lake, Apache Iceberg, Hudi). 𝐊𝐞𝐲 𝐀𝐝𝐯𝐚𝐧𝐭𝐚𝐠𝐞𝐬 𝐙𝐞𝐫𝐨 𝐃𝐨𝐰𝐧𝐭𝐢𝐦𝐞: No manual schema updates required. 𝐂𝐨𝐬𝐭 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲: Only newly added columns or partitions are processed. 𝐀𝐮𝐝𝐢𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲: Schema versions are tracked, making historical queries accurate. #Data Engineering #Data Visualization #Data Science #Data Governance

To view or add a comment, sign in

Explore content categories