August 13, 2025
9 things CISOs need know about the dark web
There’s a growing emphasis on scalability and professionalization, with aggressive promotion and recruitment for ransomware-as-a-service (RaaS) operations. This includes lucrative affiliate programs to attract technically skilled partners and tiered access enabling affiliates to pay for premium tools, zero-day exploits or access to pre-compromised networks. It’s fragmenting into specialized communities that include credential marketplaces, exploit exchanges for zero-days, malware kits, and access to compromised systems, and forums for fraud tools. Initial access brokers (IABs) are thriving, selling entry points into corporate environments, which are then monetized by ransomware affiliates or data extortion groups. Ransomware leak sites showcase attackers’ successes, publishing sample files, threats of full data dumps as well as names and stolen data of victim organizations that refuse to pay. ... While DDoS-for-hire services have existed for years, their scale and popularity are growing. “Many offer free trial tiers, with some offering full-scale attacks with no daily limits, dozens of attack types, and even significant 1 Tbps-level output for a few thousand dollars,” Richard Hummel, cybersecurity researcher and threat intelligence director at Netscout, says. The operations are becoming more professional and many platforms mimic legitimate e-commerce sites displaying user reviews, seller ratings, and dispute resolution systems to build trust among illicit actors.
CMMC Compliance: Far More Than Just an IT Issue
For many years, companies working with the US Department of Defense (DoD) treated regulatory mandates including the Cybersecurity Maturity Model Certification (CMMC) as a matter best left to the IT department. The prevailing belief was that installing the right software and patching vulnerabilities would suffice. Yet, reality tells a different story. Increasingly, audits and assessments reveal that when compliance is seen narrowly as an IT responsibility, significant gaps emerge. In today’s business environment, managing controlled unclassified information (CUI) and federal contract information (FCI) is a shared responsibility across various departments – from human resources and manufacturing to legal and finance. ... For CMMC compliance, there needs to be continuous assurance involving regularly monitoring systems, testing controls and adapting security protocols whenever necessary. ... Businesses are having to rethink much of their approach to security because of CMMC requirements. Rather than treating it as something to be handed off to the IT department, organizations must now commit to a comprehensive, company-wide strategy. Integrating thorough physical security, ongoing training, updated internal policies and steps for continuous assurance mean companies can build a resilient framework that meets today’s regulatory demands and prepares them to rise to challenges on the horizon.
Beyond Burnout: Three Ways to Reduce Frustration in the SOC
For years, we’ve heard how cybersecurity leaders need to get “business smart” and better understand business operations. That is mostly happening, but it’s backwards. What we need is for business leaders to learn cybersecurity, and even further, recognize it as essential to their survival. Security cannot be viewed as some cost center tucked away in a corner; it’s the backbone of your entire operation. It’s also part of an organization’s cyber insurance – the internal insurance. Simply put, cybersecurity is the business, and you absolutely cannot sell without it. ... SOCs face a deluge of alerts, threats, and data that no human team can feasibly process without burning out. While many security professionals remain wary of artificial intelligence, thoughtfully embracing AI offers a path toward sustainable security operations. This isn’t about replacing analysts with technology. It’s about empowering them to do the job they actually signed up for. AI can dramatically reduce toil by automating repetitive tasks, provide rapid insights from vast amounts of data, and help educate junior staff. Instead of spending hours manually reviewing documents, analysts can leverage AI to extract key insights in minutes, allowing them to apply their expertise where it matters most. This shift from mundane processing to meaningful analysis can dramatically improve job satisfaction.
7 legal considerations for mitigating risk in AI implementation
AI systems often rely on large volumes of data, including sensitive personal, financial and business information. Compliance with data privacy laws is critical, as regulations such as the European Union’s General Data Protection Regulation, the California Consumer Privacy Act and other emerging state laws impose strict requirements on the collection, processing, storage and sharing of personal data. ... AI systems can inadvertently perpetuate or amplify biases present in training data, leading to unfair or discriminatory outcomes. This risk is present in any sector, from hiring and promotions to customer engagement and product recommendations. ... The legal framework surrounding AI is evolving rapidly. In the U.S., multiple federal agencies, including the Federal Trade Commission and Equal Employment Opportunity Commission, have signaled they will apply existing laws to AI use cases. AI-specific state laws, including in California and Utah, have taken effect in the last year. ... AI projects involve unique intellectual property questions related to data ownership and IP rights in AI-generated works. ... AI systems can introduce new cybersecurity vulnerabilities, including risks related to data integrity, model manipulation and adversarial attacks. Organizations must prioritize cybersecurity to protect AI assets and maintain trust.
Forrester’s Keys To Taming ‘Jekyll and Hyde’ Disruptive Tech
“Disruptive technologies are a double-edged sword for environmental sustainability, offering both crucial enablers and significant challenges,” explained the 15-page report written by Abhijit Sunil, Paul Miller, Craig Le Clair, Renee Taylor-Huot, Michele Pelino, with Amy DeMartine, Danielle Chittem, and Peter Harrison. “On the positive side,” it continued, “technology innovations accelerate energy and resource efficiency, aid in climate adaptation and risk mitigation, monitor crucial sustainability metrics, and even help in environmental conservation.” “However,” it added, “the necessary compute power, volume of waste, types of materials needed, and scale of implementing these technologies can offset their benefits.” ... “To meet sustainability goals with automation and AI,” he told TechNewsWorld, “one of our recommendations is to develop proofs of concept for ‘stewardship agents’ and explore emerging robotics focused on sustainability.” When planning AI operations, Franklin Manchester, a principal global industry advisor atSAS, an analytics and artificial intelligence software company in Cary, N.C., cautioned, “Not every nut needs to be cracked with a sledgehammer.” “Start with good processes — think lean process mapping, for example — and deploy AI where it makes sense to do so,” he told TechNewsWorld.
5 Key Benefits of Data Governance
Data governance processes establish data ethics, a code of behavior providing a trustworthy business climate and compliance with regulatory requirements. The IAPP calculates that 79% of the world’s population is now protected under privacy regulations such as the EU’s General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). This statistic highlights the importance of governance frameworks for risk management and customer trust. ... Data governance frameworks recognize data governance roles and responsibilities and streamline processes so that corporate-wide communications can improve. This systematic approach sets up businesses to be more agile, increasing the “freedom to innovate, invest, or hunker down and focus internally,” says O’Neal. For example, Freddie Mac developed a solid data strategy that streamlined data governance communications and later had the level of buy-in for the next iteration. ... With a complete picture of business activities, challenges, and opportunities, data governance creates the flexibility to respond quickly to changing needs. This allows for better self-service business intelligence, where business users can gather multi-structured data from various sources and convert it into actionable intelligence.