September 20, 2025
Quantum computers are expected to solve problems currently intractable for even the world’s fastest supercomputers. Their core strengths — efficiently finding hidden patterns in complex datasets and navigating vast optimization challenges — will enable the design of novel drugs and materials, the creation of superior financial algorithms and open new frontiers in cryptography and cybersecurity. ... The quantum ecosystem now largely agrees that simply scaling up today’s computers, which suffer from significant noise and errors that prevent fault-tolerant operation, won’t unlock the most valuable commercial applications. The industry’s focus has shifted to quantum error correction as the key to building robust and scalable fault-tolerant machines. ... Most early quantum computing companies tried a full-stack approach. Now that the industry is maturing, a rich ecosystem of middle-of-the-stack players has emerged. This evolution allows companies to focus on what they do best and buy components and capabilities as needed, such as control systems from Quantum Machines and quantum software development from firms ... recent innovations in quantum networking technology have made a scale-out approach a serious contender.
Exfiltration-first attacks have re-written the rules, with stolen data providing criminals with a faster, more reliable payday than the complex mechanics of encryption ever could. The threat of leaking data like financial records, intellectual property, and customer and employee details delivers instant leverage. Unlike encryption, if the victim stands firm and refuses to pay up, criminal groups can always sell their digital loot on the dark web or use it to fuel more targeted attacks. ... Phishing emails, once known for being riddled with tell-tale grammar and spelling mistakes, are now polished, personalized and delivered in perfect English. AI-powered deepfake voices and videos are providing convincing impersonations of executives or trusted colleagues that have defrauded companies for millions. At the same time, attackers are deploying custom chatbots to manage ransom negotiations across multiple victims simultaneously, applying pressure with the relentless efficiency of machines. ... Yet resilience is not simply a matter of dashboards and detection thresholds – it is equally about supporting those on the frontlines. Security leaders already working punishing hours under relentless scrutiny cannot be expected to withstand endless fatigue and a culture of blame without consequence. Organizations must also embed support for their teams into their response frameworks, from clear lines of communication and decompression time to wellbeing checks.
The uncertainty is driving concern. “There's been a lot more talk around, ‘Should we be managing sovereign cloud, should we be using on-premises more, should we be relying on our non-North American public contractors?” said Tracy Woo, a principal analyst with researcher and advisory firm Forrester. Ditching a major public cloud provider over sovereignty concerns, however, is not a practical option. These providers often underpin expansive global workloads, so migrating to a new architecture would be time-consuming, costly, and complex. There also isn’t a simple direct switch that companies can make if they’re looking to avoid public cloud; sourcing alternatives must be done thoughtfully, not just in reaction to one challenge. ... “There's a nervousness around deployment of AI, and I think that nervousness comes from -- definitely in conversations with other CIOs -- not knowing the data,” said Bell. Although decoupling from the major cloud providers is impractical on many fronts, issues of sovereignty as well as cost could still push CIOs to embrace a more localized approach, Woo said. “People are realizing that we don't necessarily need all the bells and whistles of the public cloud providers, whether that's for latency or performance reasons, or whether it's for cost or whether that's for sovereignty reasons,” explained Woo.
Agentic AI systems don’t just predict or recommend, they act. These intelligent software agents operate with autonomy toward defined business goals, planning, learning, and executing across enterprise workflows. This is not the next version of traditional automation or static bots. It’s a fundamentally different operating paradigm, one that will shape the future of digital enterprises. ... For many enterprises, the last decade of AI investment has focused on surfacing insights: detecting fraud, forecasting demand, and predicting churn. These are valuable outcomes, but they still require humans or rigid automation to respond. Agentic AI closes that gap. These agents combine machine learning, contextual awareness, planning, and decision logic to take goal-directed action. They can process ambiguity, work across systems, resolve exceptions, and adapt over time. ... Agentic AI will not simply automate tasks. It will reshape how work is designed, measured, and managed. As autonomous agents take on operational responsibility, human teams will move toward supervision, exception resolution, and strategic oversight. New KPIs will emerge, not just around cost or cycle time, but around agent quality, business impact, and compliance resilience. This shift will also demand new talent models. Enterprises must upskill teams to manage AI systems, not just processes.
The digital transformation of public services involves “an accelerated convergence between IT and OT systems, as well as the massive incorporation of connected IoT devices,” she explains, which gives rise to challenges such as an expanding attack surface or the coexistence of obsolete infrastructure with modern ones, in addition to a lack of visibility and control over devices deployed by multiple providers. ... “According to the European Cyber Security Organisation, 86% of European local governments with IoT deployments have suffered some security breach related to these devices,” she says. Accenture’s Domínguez adds that the challenge is to consider “the fragmentation of responsibilities between administrations, concessionaires, and third parties, which complicates cybersecurity governance and requires advanced coordination models.” De la Cuesta also emphasizes the siloed nature of project development, which significantly hinders the development of an active cybersecurity strategy. ... In the integration of new tools, despite Spain holding a leading position in areas such as 5G, “technology moves much faster than the government’s ability to react,” he says. “It’s not like a private company, which has a certain agility to make investments,” he explains. “Public administration is much slower. Budgets are different. Administrative procedures are extremely long. From the moment a project is first discussed until it is actually executed, many years pass.”
Welcome to the shadow SDLC — the one your team built with AI when you weren't looking: It generates code, dependencies, configs, and even tests at machine speed, but without any of your governance, review processes, or security guardrails. ... It’s not just about insecure code sneaking into production, but rather about losing ownership of the very processes you’ve worked to streamline. Your “evil twin” SDLC comes with: Unknown provenance → You can’t always trace where AI-generated code or dependencies came from. Inconsistent reliability → AI may generate tests or configs that look fine but fail in production. Invisible vulnerabilities → Flaws that never hit a backlog because they bypass reviews entirely. ... AI assistants are now pulling in OSS dependencies you didn’t choose — sometimes outdated, sometimes insecure, sometimes flat-out malicious. While your team already uses hygiene tools like Dependabot or Renovate, they’re only table stakes that don’t provide governance. ... The “evil twin” of your SDLC isn’t going away. It’s already here, writing code, pulling dependencies, and shaping workflows. The question is whether you’ll treat it as an uncontrolled shadow pipeline — or bring it under the same governance and accountability as your human-led one. Because in today’s environment, you don’t just own the SDLC you designed. You also own the one AI is building — whether you control it or not.