World-First Molecular Quantum Entanglement Achieved at Durham University In a groundbreaking achievement, scientists at Durham University in the UK have successfully demonstrated quantum entanglement of molecules with a record-breaking fidelity of 92%. This marks the first time entanglement has been achieved with molecules, advancing quantum mechanics research and opening doors to revolutionary technologies in communication, sensing, and computing. Key Highlights: 1. Quantum Entanglement Basics: Quantum entanglement links particles such that the state of one influences the other, regardless of distance. This phenomenon is a cornerstone for developing next-generation quantum technologies, enabling faster communication and enhanced computational power. 2. ‘Magic-Wavelength’ Optical Tweezers: The team utilized highly precise optical traps known as magic-wavelength optical tweezers to create environments supporting long-lasting molecular entanglement. These advanced tools allowed for stable control and manipulation of molecular states. 3. Applications: • Quantum Networking: Entanglement over existing fiber optic cables could accelerate the real-world deployment of quantum networks without requiring extensive new infrastructure. • Quantum Computing and Sensing: Molecules, with their complex internal structures, offer new dimensions for computation and precision sensing, potentially surpassing the capabilities of entangled atoms. 4. Major Milestone: While entanglement between atoms has been repeatedly demonstrated, molecules bring added complexity due to their additional internal structures. Achieving high-fidelity entanglement with molecules is a significant step forward in the field. Implications for the Future: This breakthrough could lead to advancements in secure communication, more powerful quantum computers, and sophisticated sensing technologies. As quantum entanglement becomes more applicable to real-world systems, innovations like this set the stage for transformative developments in science and technology.
Quantum Mechanics in Real-World Applications
Explore top LinkedIn content from expert professionals.
Summary
Quantum mechanics in real-world applications refers to using the principles of quantum physics—such as entanglement, superposition, and true randomness—to solve practical problems across industries like computing, finance, drug discovery, and cybersecurity. This field is moving beyond theory, showing measurable impact with solutions that classical methods alone cannot provide.
- Explore new technologies: Consider how quantum-enabled solutions are now addressing real industry challenges, such as secure communications, drug design, and financial modeling, offering capabilities that weren't possible before.
- Embrace certified security: Look for applications where quantum systems provide true randomness and enhanced data privacy, which are becoming crucial in cryptography and secure digital transactions.
- Integrate hybrid approaches: Combine quantum and classical computing to tackle complex simulations and data-heavy problems, as this synergy is already demonstrating improved results in areas from pharmaceuticals to financial markets.
-
-
The Schrödinger Equation Gets Practical: Quantum Algorithm Speeds Up Real-World Simulations Quantum computing has taken a major leap forward with a new algorithm designed to simulate coupled harmonic oscillators, systems that model everything from molecular vibrations to bridges and neural networks. By reformulating the dynamics of these oscillators into the Schrödinger equation and applying Hamiltonian simulation methods, researchers have shown that complex physical systems can be simulated exponentially faster on a quantum computer than with traditional algorithms. This breakthrough demonstrates not only a practical use of the Schrödinger equation but also the deep connection between quantum dynamics and classical mechanics. The study introduces two powerful quantum algorithms that reduce the required resources to only about log(N) qubits for N oscillators, compared to the massive computational demands of classical methods. This exponential speedup could transform fields such as engineering, chemistry, neuroscience, and material science, where coupled oscillators serve as the backbone of real-world modeling. By bridging theory and application, this research underscores how quantum computing is redefining problem-solving in physics and beyond. With proven exponential advantages and the ability to simulate systems once thought computationally impossible, this quantum algorithm marks a milestone in quantum simulation, Hamiltonian dynamics, and real-world physics applications. The findings point toward a future where quantum computers can accelerate scientific discovery, optimize engineering designs, and even open new frontiers in AI and computational neuroscience. #QuantumComputing #SchrodingerEquation #HamiltonianSimulation #QuantumAlgorithm #CoupledOscillators #QuantumPhysics #ComputationalScience #Neuroscience #Chemistry #Engineering
-
Is this the first real-world use case for quantum computers? True randomness is hard to come by. And in a world where cryptography and fairness rely on it, “close enough” just doesn’t cut it. A new paper in Nature claims to present a demonstrated, certified application of quantum computing, not in theory or simulation, but in the real world. Led by Quantinuum, JPMorganChase, Argonne National Laboratory, Oak Ridge National Laboratory, and The University of Texas at Austin, the team successfully ran a certified randomness expansion protocol on Quantinuum’s 56-qubit H2 quantum computer, and validated the results using over 1.1 exaflops of classical computing power. TL;DR is certified randomness--the kind of true, verifiable unpredictability that’s essential to cryptography and security--was generated by a quantum computer and validated by the world’s fastest supercomputers. Here’s why that matters: True randomness is anything but trivial. Classical systems can simulate randomness, but they’re still deterministic at the core. And for high-stakes environments such as finance, national security, or fairness in elections, you don’t want pseudo-anything. You want cold, hard entropy that no adversary can predict or reproduce. Quantum mechanics is probabilistic by nature. But just generating randomness with a quantum system isn’t enough; you need to certify that it’s truly random and not spoofed. That’s where this experiment comes in. Using a method called random circuit sampling, the team: ⚇ sent quantum circuits to Quantinuum’s 56-qubit H2 processor, ⚇ had it return outputs fast enough to make classical simulation infeasible, ⚇ verified the randomness mathematically using the Frontier supercomputer ⚇ while the quantum device accessed remotely, proving a future where secure, certifiable entropy doesn’t require trusting the hardware in front of you The result? Over 71,000 certifiably random bits generated in a way that proves they couldn’t have come from a classical machine. And it’s commercially viable. Certified randomness may sound niche—but it’s highly relevant to modern cryptography. This could be the start of the earliest true “quantum advantage” that actually matters in practice. And later this year, Quantinuum plans to make it a product. It’s a shift— from demos to deployment from supremacy claims to measurable utility from the theoretical to the trustworthy read more from Matt Swayne at The Quantum Insider here --> https://lnkd.in/gdkGMVRb peer-reviewed paper --> https://lnkd.in/g96FK7ip #QuantumComputing #CertifiedRandomness #Cryptography
-
🌟 𝗥𝗲𝘃𝗼𝗹𝘂𝘁𝗶𝗼𝗻𝗶𝘇𝗶𝗻𝗴 𝗗𝗿𝘂𝗴 𝗗𝗶𝘀𝗰𝗼𝘃𝗲𝗿𝘆 𝘄𝗶𝘁𝗵 𝗤𝘂𝗮𝗻𝘁𝘂𝗺 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 🌟 Excited to share a groundbreaking study that explores the potential of quantum computing in transforming the pharmaceutical industry! 🚀💊 🧪 𝗙𝗼𝗰𝘂𝘀: Precise determination of Gibbs free energy profiles for prodrug activation. Accurate simulation of covalent bond interactions. This pioneering work goes beyond conventional proof-of-concept studies by addressing real-world drug design challenges. By constructing a versatile quantum computing pipeline, the researchers have taken significant steps towards integrating quantum computation into practical drug discovery workflows. 🧬🔗 𝗞𝗲𝘆 𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀: 💥 𝗧𝗿𝗮𝗻𝘀𝗶𝘁𝗶𝗼𝗻 𝗳𝗿𝗼𝗺 𝗧𝗵𝗲𝗼𝗿𝗲𝘁𝗶𝗰𝗮𝗹 𝗠𝗼𝗱𝗲𝗹𝘀 𝘁𝗼 𝗧𝗮𝗻𝗴𝗶𝗯𝗹𝗲 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀: Unlike previous studies that were primarily theoretical, this research implements a hybrid quantum computing pipeline to solve practical problems in drug design. This marks a significant shift towards real-world applicability of quantum computing in pharmaceuticals, making it a valuable tool for researchers and industry professionals. 💥 𝗕𝗲𝗻𝗰𝗵𝗺𝗮𝗿𝗸𝗶𝗻𝗴 𝗤𝘂𝗮𝗻𝘁𝘂𝗺 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 𝗔𝗴𝗮𝗶𝗻𝘀𝘁 𝗩𝗲𝗿𝗶𝘁𝗮𝗯𝗹𝗲 𝗦𝗰𝗲𝗻𝗮𝗿𝗶𝗼𝘀 𝗶𝗻 𝗗𝗿𝘂𝗴 𝗗𝗲𝘀𝗶𝗴𝗻: The study sets a new benchmark by applying quantum computing to actual drug design scenarios. This involves precise calculations and simulations that are critical in the drug discovery process, showcasing the capability of quantum computing to handle complex biochemical problems that traditional methods struggle with. 💥 𝗘𝗺𝗽𝗵𝗮𝘀𝗶𝘇𝗶𝗻𝗴 𝗖𝗼𝘃𝗮𝗹𝗲𝗻𝘁 𝗕𝗼𝗻𝗱𝗶𝗻𝗴 𝗜𝘀𝘀𝘂𝗲𝘀 𝗶𝗻 𝗖𝗮𝘀𝗲 𝗦𝘁𝘂𝗱𝗶𝗲𝘀: The research specifically targets covalent bond interactions, a crucial aspect in drug development. By focusing on the precise determination of Gibbs free energy profiles for prodrug activation and accurate simulation of covalent bond interactions, the study addresses critical tasks that are central to designing effective drugs. This focus on covalent bonding issues underscores the practical significance of the study. The results demonstrate the immense potential of quantum computing in creating scalable solutions for the pharmaceutical industry. This is a remarkable step forward in the quest to revolutionize drug discovery and design! 🌐💡 Citation: Li, W., Yin, Z., Li, X. et al. A hybrid quantum computing pipeline for real world drug discovery. Sci Rep 14, 16942 (2024). https://lnkd.in/d3mkrAPs #QuantumComputing #DrugDiscovery #Pharmaceuticals #Innovation #Technology #Science #Research
-
Breaking Quantum News: Real algorithms, real data, real quantum machines HSBC, in partnership with IBM, has delivered the world’s first quantum-enabled algorithmic trading trial. Using live, production-scale data from the European corporate bond market, HSBC integrated IBM’s quantum processors with classical systems—achieving up to a 34% improvement in predicting the probability of winning trades compared with classical methods alone. Why it matters: - Bond trading is one of the most complex, data-heavy challenges in finance. - Classical models struggle to capture hidden pricing signals in noisy markets. - By augmenting workflows with IBM Quantum Heron, HSBC uncovered insights classical systems could not. As Philip Intallura Ph.D, HSBC’s Global Head of Quantum Technologies, put it: “This is a tangible example of how today’s quantum computers could solve a real-world business problem at scale and offer a competitive edge.” And as IBM’s Jay Gambetta emphasized: breakthroughs come from combining deep financial expertise with cutting-edge quantum algorithms—demonstrating what becomes possible as quantum advances. This is not hype. It’s not distant. Quantum is entering the market—today. #QuantumComputing #Finance #Innovation #PQC #QuantumReady
-
A quantum computer recently solved a problem in just four minutes that would take even the most advanced classical supercomputer billions of years to complete. This breakthrough was achieved using a 76-qubit photon-based quantum computer prototype called Jiuzhang. Unlike traditional computers, which rely on electrical circuits, this quantum computer uses an intricate system of lasers, mirrors, prisms, and photon detectors to process information. It performs calculations using a technique known as Gaussian boson sampling, which detects and counts photons. With the ability to count 76 photons, this system far surpasses the five-photon limit of conventional supercomputers. Beyond being a scientific milestone, this technique has real-world potential. It could help solve highly complex problems in quantum chemistry, advanced mathematics, and even contribute to developing a large-scale quantum internet. For example, quantum computers could help scientists design new medicines by simulating how molecules interact at the quantum level—something that classical computers struggle to do efficiently. This could lead to faster discoveries of life-saving drugs and treatments. While both quantum and classical computers are used to solve problems, they function very differently. Quantum computers take advantage of the unique properties of quantum mechanics—such as superposition and entanglement—to perform calculations at incredible speeds. This makes them especially powerful for solving problems that would be nearly impossible for traditional computers, bringing exciting new possibilities for scientific and technological advancements. As the Gaelic saying goes, “Tús maith leath na hoibre”—“A good start is half the work.” Quantum computing is still in its early stages, but its potential to reshape science, medicine, and technology is already clear.
-
We often talk about quantum computing in abstract terms, but its real promise lies in solving problems that classical systems can't tackle efficiently, like simulating molecular interactions or optimizing complex logistics. And while these machines are still emerging, their progress is accelerating fast, especially with fault-tolerant architectures on the horizon. Quantum communication, on the other hand, isn't about speed—it’s about trust. The ability to detect eavesdropping or signal interference using the quirks of quantum mechanics opens up new standards for security. But we’re still navigating the technical challenges of consistency and scalability. Then there’s quantum sensing—a quieter field, but incredibly relevant. From medical imaging to geological exploration, the enhanced precision of quantum sensors could soon transform how we perceive and measure the world around us. These use cases are evolving in parallel, each with different maturity levels. But they all reflect one simple idea: tapping into quantum phenomena may not replace our current tools—it might expand what’s possible. #QuantumComputing #EmergingTech #DigitalTransformation
Explore categories
- Hospitality & Tourism
- Productivity
- Finance
- Soft Skills & Emotional Intelligence
- Project Management
- Education
- Leadership
- Ecommerce
- User Experience
- Recruitment & HR
- Customer Experience
- Real Estate
- Marketing
- Sales
- Retail & Merchandising
- Science
- Supply Chain Management
- Future Of Work
- Consulting
- Writing
- Economics
- Artificial Intelligence
- Employee Experience
- Healthcare
- Workplace Trends
- Fundraising
- Networking
- Corporate Social Responsibility
- Negotiation
- Communication
- Engineering
- Career
- Business Strategy
- Change Management
- Organizational Culture
- Design
- Innovation
- Event Planning
- Training & Development