🚨 Quantum Computing Breakthrough in Finance 🚨 HSBC just announced a world-first. By using IBM’s Heron quantum processor, the bank achieved a 34% improvement in predicting bond trading probabilities. This marks the first time a bank has applied quantum computing to real financial trading data at scale, moving beyond theory and into production-level application. Some are calling this a “Sputnik moment” for quantum. That is not a perfect analogy, given the geopolitical nature of Sputnik and the corporate implications of HSBC's use of quantum computing. But I am not surprised to see a big leap forward for quantum in the world of finance. In fact, when I wrote Quantum: Computing Nouveau back in 2018, I predicted this exact trajectory: that quantum would move from academic labs to financial markets and other industries where optimization, forecasting, and massive data challenges are prevalent. In my 2018 book, I outlined - Why finance would be among the earliest adopters of quantum, thanks to its reliance on complex risk management, forecasting, and trading models. - How quantum computing could deliver step-change improvements in processing power, solving problems classical computing struggles and corporate NP problems. In computer science, NP (nondeterministic polynomial-time) problems are problems where it’s easy to verify a solution once you have it, but extremely hard to calculate the solution in the first place. - The looming arms race for quantum advantage, not only among tech companies, but also in financial services, energy, logistics, and governments. HSBC’s milestone confirms that we’re crossing the threshold from theory to practice. Quantum computing isn’t just “new math”—it’s new computing, with profound implications for markets, cybersecurity, and global competition. 🔮 Back in 2018, I wrote that quantum computing is not just optional. It is a conditio sine qua non for the future of finance and data-driven industries. Today, we’re watching that future unfold. #Quantum #QuantumComputing #Future #Finance https://lnkd.in/gMNc2M9b
Quantum Technology Advances for Modern Business Solutions
Explore top LinkedIn content from expert professionals.
Summary
Quantum technology advances for modern business solutions refer to the adoption of quantum computing and related technologies to solve complex problems in industries such as finance, cybersecurity, logistics, and energy. Unlike traditional computers, quantum systems use principles of quantum mechanics to process information more efficiently, opening new possibilities for faster decision-making, secure communications, and smarter resource management.
- Upgrade security systems: Begin exploring quantum-resistant encryption methods to safeguard sensitive data against future cyber threats.
- Streamline operations: Consider how quantum algorithms can help manage large-scale logistics or energy distribution, reducing bottlenecks and improving reliability.
- Plan for transformation: Start preparing your team for quantum readiness by monitoring industry trends and investing in research or partnerships with quantum-focused startups.
-
-
Quantum computing is rapidly transitioning from theoretical research to practical applications, significantly impacting cybersecurity. The potential of quantum computers to break traditional encryption methods poses a substantial threat, creating a pressing need for quantum-resistant solutions. This scenario presents a substantial opportunity for startups specializing in quantum cybersecurity. Advancements in Quantum Computing In 2024, companies like IBM, Google, and startups such as IonQ and Rigetti achieved significant milestones in quantum computing, enhancing qubit stability and scalability. Notably, Google's Willow chip has advanced quantum computing capabilities, bringing the industry closer to practical applications. Implications for Cybersecurity The evolution of quantum computing threatens current encryption methods like RSA and ECC, which rely on the difficulty of factoring large numbers—a task quantum computers could perform efficiently. This development necessitates the adoption of quantum-resistant, or post-quantum, cryptography to secure sensitive data. Opportunities for Startups The pressing need for quantum-resistant cybersecurity solutions opens avenues for startups to innovate and lead in this emerging field. Developing and implementing quantum-safe encryption methods, such as Quantum Key Distribution (QKD), can provide enhanced security for critical communications. Additionally, startups can focus on creating hybrid quantum-classical security systems that integrate quantum-safe algorithms into existing platforms, facilitating a smoother transition for organizations. Market Potential The quantum cybersecurity market is poised for significant growth. Investments in quantum computing startups are increasing, with companies like BlueQubit securing substantial funding to advance their missions. Furthermore, regions like Chicago are positioning themselves as hubs for quantum computing innovation, attracting startups and investments. Conclusion The intersection of quantum computing and cybersecurity presents a transformative opportunity for startups. By developing quantum-resistant solutions, these companies can play a crucial role in safeguarding digital information in the quantum era, addressing one of the most pressing challenges in technology today.
-
Breakthrough for the #quantum internet: For the first time a major telco provider has successfully conducted entangled photon experiments - on its own infrastructure. ➡️ 30 kilometers, 17 days, 99 per cent fidelity. Our teams at T-Labs have successfully transmitted entangled photons over a fiber-optic network. Over a distance comparable to travelling from Berlin to Potsdam. The system automatically compensated for changing environmental conditions in the network. Together with our partner Qunnect we have demonstrated that quantum entanglement works reliably. The goal: a quantum internet that supports applications beyond secure point-to-point networks. Therefore, it is necessary to distribute the types of entangled photons. The so-called qubits, that are used for #QuantumComputing, sensors or memory. Polarization qubits, like the ones used for this test, are highly compatible with many quantum devices. But: they are difficult to stabilize in fibers. From the lab to the streets of Berlin: This success is a decisive step towards the quantum internet. 🔬 It shows how existing telecommunications infrastructure can support the quantum technologies of tomorrow. This opens the door to new forms of communication. Why does this matter for people and society? 🗨️ Improved communications: The quantum internet promises faster and more efficient long-distance communications. 🔐 Maximum security: Entanglement can be used in quantum key distribution protocols. Enabling ultra-secure communication links for enterprises and government institutions 💡Technological advancement: high-precision time synchronization for satellite networks and highly accurate sensing in industrial IoT environments will need entanglement. Developing quantum technologies isn’t just a technical challenge. A #humancentered approach asks how these systems can be built to serve real needs and be part of everyday infrastructure. With 2025 designated as the International Year of Quantum Science and Technology, now is the time to move from research to readiness. Matheus Sena, Marc Geitz, Riccardo Pascotto, Dr. Oliver Holschke, Abdu Mudesir
-
Our R&D team at Stellium Inc. has recently been diving deep into concepts like quantum machine learning and quantum PCA, with the goal of identifying the best levers out there to address supply chain challenges with emerging tech. After our most recent midmonth Innov8 workshop, I’m no longer surprised by the fact that the market size for quantum computing is projected to grow at a CAGR of 18+% during the forecast period 2025-2032. The modern supply chain, as we all know, forms a sophisticated network of interconnected elements, where decision-making amid complexity often involves significant uncertainty. Effective management hinges on processing vast streams of real-time data to minimize costs and fulfill customer demands. As these global systems expand, classical computing approaches are reaching their limits in processing speed and handling intricate modeling. Enter Quantum Computing: 🎱 Quantum solutions are exceptionally positioned to tackle the most demanding challenges in logistics, including route optimization, operational efficiency, and emissions reduction. This capability stems from foundational quantum mechanics principles such as Superposition, Interference and Entanglement, that are redefining computational processes. For supply chain executives, this really boils down to resolving complex problems more rapidly than classical algorithms, including those on supercomputers. The aim is to develop responsive analytics through dramatically reduced computation times. Large scale supply chain optimization problems are no longer going to need hrs or days but rather seconds. Industry researchers and a few enterprises are already applying techniques such as the Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing. These methods reformulate combinatorial challenges, like the traveling salesman problem in transportation logistics into quantum frameworks, identifying optimal solutions by reaching the ‘minimum energy state’. We are now seeing progress beyond conceptual stages to practical Proofs of Concept (PoCs): • BMW Group applied recursive QAOA to address partitioning issues in supply chain resource allocation. • Volkswagen demonstrated real-time optimal routing through urban traffic variations. • Coca-Cola Bottlers Japan Inc. utilized quantum computing to refine their logistics for a network exceeding 700,000 vending machines. Quantum-powered logistics and supply chain innovations are poised for substantial growth in the years ahead. Forward-thinking organizations recognize the impending transformation and are proactively preparing to become quantum-ready. At Stellium Inc., we are in our early R&D stage when it comes to exploring quantum use cases and strategic partnerships. I am bullish about the impact it’s going to have on supply chain and recognize the need to invest in it right now. DM if you’re interested to discuss more over coffee at Dubai this coming week or at SAP Connect early October in Vegas.
-
As reported by World Economic Forum, #quantumcomputing is emerging as a transformative solution for #energy forecasting and optimization, addressing the growing complexities of renewable energy integration and evolving consumption patterns. Traditional computing struggles to manage the variability of #solar and #wind energy, coupled with the unpredictability of rising electrification from #electricvehicles and smart appliances. These challenges require advanced computational capabilities to balance supply and demand effectively. Quantum computing leverages qubits, which process vast datasets simultaneously, enabling highly accurate energy forecasting. By incorporating weather patterns, historical usage data, and grid conditions, quantum algorithms enhance predictions, allowing energy providers to better anticipate fluctuations in renewable generation and align energy distribution with demand. This reduces inefficiencies, minimizes energy waste, and ensures a stable power supply. Beyond forecasting, quantum computing optimizes power grid operations by identifying potential bottlenecks, improving load balancing, and enabling real-time grid management. This results in a more resilient and adaptive energy infrastructure. Additionally, quantum computing enhances energy storage efficiency and demand-response strategies by determining the best times to charge and discharge energy, ensuring alignment with grid conditions. Practical applications are already demonstrating the benefits of quantum computing, from optimizing renewable integration to improving electric vehicle charging schedules. As the #technology advances, it will play an increasingly critical role in shaping the future of energy management. By offering real-time optimization, increased efficiency, and more sustainable energy solutions, quantum computing is set to revolutionize the #global #energy sector, ensuring a cleaner, more resilient, and reliable energy #ecosystem.
Explore categories
- Hospitality & Tourism
- Productivity
- Finance
- Soft Skills & Emotional Intelligence
- Project Management
- Education
- Leadership
- Ecommerce
- User Experience
- Recruitment & HR
- Customer Experience
- Real Estate
- Marketing
- Sales
- Retail & Merchandising
- Science
- Supply Chain Management
- Future Of Work
- Consulting
- Writing
- Economics
- Artificial Intelligence
- Employee Experience
- Healthcare
- Workplace Trends
- Fundraising
- Networking
- Corporate Social Responsibility
- Negotiation
- Communication
- Engineering
- Career
- Business Strategy
- Change Management
- Organizational Culture
- Design
- Innovation
- Event Planning
- Training & Development