Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The regulation and function of post-transcriptional RNA splicing

Abstract

Eukaryotic RNA transcripts undergo extensive processing before becoming functional messenger RNAs, with splicing being a critical and highly regulated step that occurs both co-transcriptionally and post-transcriptionally. Recent analyses have revealed, with unprecedented spatial and temporal resolution, that up to 40% of mammalian introns are retained after transcription termination and are subsequently removed largely while transcripts remain chromatin-associated. Post-transcriptional splicing has emerged as a key layer of gene expression regulation during development, stress response and disease progression. The control of post-transcriptional splicing regulates protein production through delayed splicing and nuclear export, or nuclear retention and degradation of specific transcript isoforms. Here, we review current methodologies for detecting post-transcriptional splicing, discuss the mechanisms controlling the timing of splicing and examine how this temporal regulation affects gene expression programmes in healthy cells and in disease states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of co-transcriptional and post-transcriptional splicing.
Fig. 2: Experimental approaches to study post-transcriptional splicing.
Fig. 3: Splicing as a rate-limiting step for chromatin release.
Fig. 4: Types of post-transcriptional splicing and connection to transcript fate.
Fig. 5: Regulation of post-transcriptional splicing.

Similar content being viewed by others

References

  1. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mariman, E. C., van Beek-Reinders, R. J. & van Venrooij, W. J. Alternative splicing pathways exist in the formation of adenoviral late messenger RNAs. J. Mol. Biol. 163, 239–256 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Osheim, Y. N., Miller, O. L. Jr & Beyer, A. L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Osheim, Y. N. & Miller, O. L. Jr Novel amplification and transcriptional activity of chorion genes in Drosophila melanogaster follicle cells. Cell 33, 543–553 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Beyer, A. L., Bouton, A. H. & Miller, O. L. Jr Correlation of hnRNP structure and nascent transcript cleavage. Cell 26, 155–165 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Baurén, G. & Wieslander, L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76, 183–192 (1994).

    Article  PubMed  Google Scholar 

  9. Tsai, M. J., Ting, A. C., Nordstrom, J. L., Zimmer, W. & O’Malley, B. W. Processing of high molecular weight ovalbumin and ovomucoid precursor RNAs to messenger RNA. Cell 22, 219–230 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Wetterberg, I., Baurén, G. & Wieslander, L. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2, 641–651 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baurén, G., Belikov, S. & Wieslander, L. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev. 12, 2759–2769 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. da Costa, P. J., Menezes, J. & Romão, L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int. J. Biochem. Cell Biol. 91, 168–175 (2017).

    Article  PubMed  Google Scholar 

  16. Shenasa, H. & Bentley, D. L. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet. 39, 672–685 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choquet, K. et al. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat. Struct. Mol. Biol. 30, 1064–1076 (2023). Long-read sequencing of chromatin-associated polyadenylated RNA showed that post-transcriptional splicing occurs for one-third of human introns and >75% of transcripts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3′ end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998–1012.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sousa-Luís, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeng, Y. et al. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol. Cell 82, 4681–4699.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. González-Iglesias, A. et al. Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche. Nat. Commun. 15, 2837 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shalgi, R., Hurt, J. A., Lindquist, S. & Burge, C. B. Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. Cell Rep. 7, 1362–1370 (2014). This study revealed that heat shock primarily inhibits post-transcriptional splicing, whereas co-transcriptional splicing of a subset of genes needed for the heat shock response is not affected.

    Article  CAS  PubMed  Google Scholar 

  25. Shine, M. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat. Rev. Mol. Cell Biol. 25, 534–554 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol. 14, 7219–7225 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandya-Jones, A. & Black, D. L. Co-transcriptional splicing of constitutive and alternative exons. RNA 15, 1896–1908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khodor, Y. L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khodor, Y. L., Menet, J. S., Tolan, M. & Rosbash, M. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA 18, 2174–2186 (2012). Using subcellular fractionation and RNA-seq, this work showed that post-transcriptional splicing is more prevalent in mouse liver than in Drosophila cells and tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yeom, K.-H. et al. Tracking pre-mRNA maturation across subcellular compartments identifies developmental gene regulation through intron retention and nuclear anchoring. Genome Res. 31, 1106–1119 (2021). This study demonstrated frequent post-transcriptional splicing and nuclear sequestration of partially spliced pre-mRNAs, which are dynamically regulated during neuronal differentiation to modulate gene expression levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008–1019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wachutka, L., Caizzi, L., Gagneur, J. & Cramer, P. Global donor and acceptor splicing site kinetics in human cells. eLife 8, e45056 (2019).

    CAS  Google Scholar 

  36. Merens, H. E., Choquet, K., Baxter-Koenigs, A. R. & Churchman, L. S. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol. 34, 968–981 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Coulon, A. et al. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3, e03939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011). Microscopy experiments of reporter RNAs showed accumulation of polyadenylated pre-mRNAs near the transcription site until splicing completion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hochberg-Laufer, H. et al. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genet. 15, e1008459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vargas, D. Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147, 1054–1065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coté, A. et al. Post-transcriptional splicing can occur in a slow-moving zone around the gene. eLife 12, RP91357 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ietswaart, R. et al. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol. Cell 84, 2765–2784.e16 (2024). This study demonstrated that mammalian mRNAs are retained on chromatin for some time between transcription termination and nuclear export and that many transcripts from 3% to 4% of protein-coding genes undergo nuclear degradation.

    Article  CAS  PubMed  Google Scholar 

  44. Burger, K. et al. 4-Thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol. 10, 1623–1630 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Altieri, J. A. C. & Hertel, K. J. The influence of 4-thiouridine labeling on pre-mRNA splicing outcomes. PLoS ONE 16, e0257503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raina, K. & Rao, B. J. Mammalian nuclear speckles exhibit stable association with chromatin: a biochemical study. Nucleus 13, 58–73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reyes, J. C., Muchardt, C. & Yaniv, M. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J. Cell Biol. 137, 263–274 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang, P. et al. Alternative polyadenylation by sequential activation of distal and proximal PolyA sites. Nat. Struct. Mol. Biol. 29, 21–31 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Ding, F. & Elowitz, M. B. Constitutive splicing and economies of scale in gene expression. Nat. Struct. Mol. Biol. 26, 424–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhat, P. et al. Genome organization around nuclear speckles drives mRNA splicing efficiency. Nature 629, 1165–1173 (2024). Using advanced genomic and imaging techniques, this work showed that genes located close to nuclear speckles display increased co-transcriptional efficiency of their encoded pre-mRNAs compared with genes that are further away.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, J. et al. Dynamics of RNA localization to nuclear speckles are connected to splicing efficiency. Sci. Adv. 10, eadp7727 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035–1052.e9 (2022). This study provided critical spatial context to post-transcriptional splicing by mapping the subnuclear distribution of transcripts with retained introns, revealing that nuclear speckles and the nuclear lamina serve as specialized processing hubs for functionally distinct classes of introns — demonstrating how nuclear compartmentalization contributes to the regulation of intron retention and RNA maturation.

    Article  CAS  PubMed  Google Scholar 

  53. Pandya-Jones, A. et al. Splicing kinetics and transcript release from the chromatin compartment limit the rate of lipid A-induced gene expression. RNA 19, 811–827 (2013). In this study, the authors demonstrated that terminal introns are excised after 3′-end cleavage and polyadenylation, while transcripts are still associated with chromatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jia, J. et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants 6, 780–788 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Yap, K., Lim, Z. Q., Khandelia, P., Friedman, B. & Makeyev, E. V. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev. 26, 1209–1223 (2012). This study established a critical developmental role for splicing by demonstrating how PTBP1 downregulation in neural differentiation promotes splicing of neuronal-specific detained introns, enabling their nuclear export and expression, while incompletely spliced transcripts are targeted to the nuclear exosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Rambout, X. & Maquat, L. E. Nuclear mRNA decay: regulatory networks that control gene expression. Nat. Rev. Genet. 25, 679–697 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meola, N. et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol. Cell 64, 520–533 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, G. et al. A two-layered targeting mechanism underlies nuclear RNA sorting by the human exosome. Cell Rep. 30, 2387–2401.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Bresson, S. M., Hunter, O. V., Hunter, A. C. & Conrad, N. K. Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet. 11, e1005610 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Silla, T., Karadoulama, E., Mąkosa, D., Lubas, M. & Jensen, T. H. The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep. 23, 2199–2210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hao, S. & Baltimore, D. RNA splicing regulates the temporal order of TNF-induced gene expression. Proc. Natl Acad. Sci. USA 110, 11934–11939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Muniz, L., Davidson, L. & West, S. Poly(A) polymerase and the nuclear poly(A) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human pre-mRNAs. Mol. Cell. Biol. 35, 2218–2230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niwa, M. & Berget, S. M. Polyadenylation precedes splicing in vitro. Gene Expr. 1, 5–14 (1991).

    CAS  PubMed  Google Scholar 

  67. Niwa, M. & Berget, S. M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5, 2086–2095 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Cooke, C., Hans, H. & Alwine, J. C. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol. Cell. Biol. 19, 4971–4979 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nesic, D., Zhang, J. & Maquat, L. E. Lack of an effect of the efficiency of RNA 3′-end formation on the efficiency of removal of either the final or the penultimate intron in intact cells. Mol. Cell. Biol. 15, 488–496 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Niwa, M., Rose, S. D. & Berget, S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Chiou, H. C., Dabrowski, C. & Alwine, J. C. Simian virus 40 late mRNA leader sequences involved in augmenting mRNA accumulation via multiple mechanisms, including increased polyadenylation efficiency. J. Virol. 65, 6677–6685 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nesic, D., Cheng, J. & Maquat, L. E. Sequences within the last intron function in RNA 3′-end formation in cultured cells. Mol. Cell. Biol. 13, 3359–3369 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidson, L. & West, S. Splicing-coupled 3′ end formation requires a terminal splice acceptor site, but not intron excision. Nucleic Acids Res. 41, 7101–7114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Antoniou, M., Geraghty, F., Hurst, J. & Grosveld, F. Efficient 3′-end formation of human beta-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucleic Acids Res. 26, 721–729 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rigo, F. & Martinson, H. G. Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing. RNA 15, 823–836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Y., Chen, Z. Y., Wang, W., Baker, C. C. & Krug, R. M. The 3′-end-processing factor CPSF is required for the splicing of single-intron pre-mRNAs in vivo. RNA 7, 920–931 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vagner, S., Vagner, C. & Mattaj, I. W. The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF 65 to couple 3′-end processing and splicing. Genes Dev. 14, 403–413 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Millevoi, S. et al. An interaction between U2AF 65 and CF Im links the splicing and 3′ end processing machineries. EMBO J. 25, 4854–4864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Millevoi, S. et al. A physical and functional link between splicing factors promotes pre-mRNA 3′ end processing. Nucleic Acids Res. 37, 4672–4683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kyburz, A., Friedlein, A., Langen, H. & Keller, W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol. Cell 23, 195–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Kwiatek, L., Landry-Voyer, A.-M., Latour, M., Yague-Sanz, C. & Bachand, F. PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention. RNA 29, 644–662 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, L. et al. The polyA tail facilitates splicing of last introns with weak 3′ splice sites via PABPN1. EMBO Rep. 24, e57128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rigo, F. & Martinson, H. G. Functional coupling of last-intron splicing and 3′-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol. Cell. Biol. 28, 849–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Tian, B., Pan, Z. & Lee, J. Y. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 17, 156–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dubbury, S. J., Boutz, P. L. & Sharp, P. A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564, 141–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648–663.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szczepińska, T. et al. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res. 25, 1622–1633 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wong, J. J.-L. et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 154, 583–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Eom, T. et al. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eLife 2, e00178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Petrić Howe, M. et al. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis. Genome Res. 32, 1808–1825 (2022).

    PubMed  PubMed Central  Google Scholar 

  93. Martin Anduaga, A. et al. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 8, e44642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Thomas, C. P., Andrews, J. I. & Liu, K. Z. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta. FASEB J. 21, 3885–3895 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Stroup, E. K. & Ji, Z. Deep learning of human polyadenylation sites at nucleotide resolution reveals molecular determinants of site usage and relevance in disease. Nat. Commun. 14, 7378 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pimentel, H. et al. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 44, 838–851 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Sakabe, N. J. & de Souza, S. J. Sequence features responsible for intron retention in human. BMC Genomics 8, 59 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92, 1266–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Mazille, M., Buczak, K., Scheiffele, P. & Mauger, O. Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts. EMBO J. 41, e110192 (2022). In this work, the authors showed that upon neuronal stimulation, the transcriptome is remodelled through degradation or increased splicing of transcripts with detained introns, with the affected transcripts and their fates dependent on the nature of the stimulus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ni, T. et al. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res. 44, 6817–6829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yue, L., Wan, R., Luan, S., Zeng, W. & Cheung, T. H. Dek modulates global intron retention during muscle stem cells quiescence exit. Dev. Cell 53, 661–676.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Gill, J. et al. Regulated intron removal integrates motivational state and experience. Cell 169, 836–848.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ninomiya, K. et al. m6A modification of HSATIII lncRNAs regulates temperature-dependent splicing. EMBO J. 40, e107976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ninomiya, K. et al. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, K., Paterson, A. J., Chin, E. & Kudlow, J. E. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc. Natl Acad. Sci. USA 97, 2820–2825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tan, Z.-W. et al. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 48, 5656–5669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pendleton, K. E., Park, S.-K., Hunter, O. V., Bresson, S. M. & Conrad, N. K. Balance between MAT2A intron detention and splicing is determined cotranscriptionally. RNA 24, 778–786 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mendel, M. et al. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184, 3125–3142.e25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Ninomiya, K., Kataoka, N. & Hagiwara, M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. J. Cell Biol. 195, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  PubMed  Google Scholar 

  117. Maslon, M. M. et al. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J. 38, e1001244 (2019).

    Article  Google Scholar 

  118. Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801.e5 (2021). This study showed that co-transcriptional RNA folding influences post-transcriptional excision of introns flanking alternative exons and alternative splicing outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. de la Mata, M., Lafaille, C. & Kornblihtt, A. R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16, 904–912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kim, S. W. et al. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res. 45, 9503–9513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gohr, A., Iñiguez, L. P., Torres-Méndez, A., Bonnal, S. & Irimia, M. Insplico: effective computational tool for studying splicing order of adjacent introns genome-wide with short and long RNA-seq reads. Nucleic Acids Res. 51, e56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Choquet, K., Chaumont, L.-P., Bache, S., Baxter-Koenigs, A. R. & Churchman, L. S. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. Genome Res. https://doi.org/10.1101/gr.279203.124 (2025).

    Article  PubMed  Google Scholar 

  124. Louloupi, A., Ntini, E., Conrad, T. & Ørom, U. A. V. Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep. 23, 3429–3437 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 31, 990–1006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tang, P. et al. Nuclear retention coupled with sequential polyadenylation dictates post-transcriptional m6A modification in the nucleus. Mol. Cell 84, 3758–3774 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Dvinge, H., Guenthoer, J., Porter, P. L. & Bradley, R. K. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res. 29, 1591–1604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jia, Y., Mu, J. C. & Ackerman, S. L. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 148, 296–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meng, D., Zheng, Q., Zhang, X., Luo, L. & Jia, Y. A molecular brake that modulates spliceosome pausing at detained introns contributes to neurodegeneration. Protein Cell 14, 318–336 (2022).

    PubMed Central  Google Scholar 

  131. Humphrey, J. et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res. 48, 6889–6905 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, S., Zhang, Z., Sinha, R., Karni, R. & Krainer, A. R. SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control. Nat. Struct. Mol. Biol. 17, 306–312 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cao, W., Jamison, S. F. & Garcia-Blanco, M. A. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA 3, 1456–1467 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Long, Y. et al. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. J. Biol. Chem. 294, 1312–1327 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Mermoud, J. E., Cohen, P. & Lamond, A. I. Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Prasad, J., Colwill, K., Pawson, T. & Manley, J. L. The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19, 6991–7000 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Duncan, P. I., Stojdl, D. F., Marius, R. M., Scheit, K. H. & Bell, J. C. The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing. Exp. Cell Res. 241, 300–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Lai, M.-C., Lin, R.-I. & Tarn, W.-Y. Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc. Natl Acad. Sci. USA 98, 10154–10159 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gui, J.-F., Lane, W. S. & Fu, X.-D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Misteli, T., Cáceres, J. F. & Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Schneider, M. et al. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nat. Struct. Mol. Biol. 17, 216–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Xiao, S. H. & Manley, J. L. Phosphorylation of the ASF/SF2 RS domain affects both protein–protein and protein–RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Fu, X. D. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Krainer, A. R., Conway, G. C. & Kozak, D. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62, 35–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  145. Lam, B. J. & Hertel, K. J. A general role for splicing enhancers in exon definition. RNA 8, 1233–1241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hertel, K. J. & Maniatis, T. Serine–arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. Proc. Natl Acad. Sci. USA 96, 2651–2655 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Aubol, B. E. et al. Release of SR proteins from CLK1 by SRPK1: a symbiotic kinase system for phosphorylation control of pre-mRNA splicing. Mol. Cell 63, 218–228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ngo, J. C. K. et al. Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Mol. Cell 20, 77–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Fedorov, O. et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem. Biol. 18, 67–76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Funnell, T. et al. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. Nat. Commun. 8, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Erhardt, S. & Stoecklin, G. The heat’s on: nuclear stress bodies signal intron retention. EMBO J. 39, e104154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Maron, M. I. et al. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 11, e72867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. DeAngelo, J. D. et al. Productive mRNA chromatin escape is promoted by PRMT5 methylation of SNRPB. Preprint at bioRxiv https://doi.org/10.1101/2024.08.09.607355 (2024).

  154. Sachamitr, P. et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat. Commun. 12, 979 (2021). This study demonstrated how high levels of PRMT5 in glioblastoma promote splicing of otherwise detained introns in pro-proliferative genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Girard, C. et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 3, 994 (2012).

    Article  PubMed  Google Scholar 

  156. Bedi, K. et al. Cotranscriptional splicing efficiencies differ within genes and between cell types. RNA 27, 829–840 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, S. et al. Structure of a transcribing RNA polymerase II-U1 snRNP complex. Science 371, 305–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Li, X. & Fu, X.-D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Tammer, L. et al. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol. Cell 82, 1021–1034.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790.e30 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kim, J., Han, K. Y., Khanna, N., Ha, T. & Belmont, A. S. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J. Cell Sci. 132, jcs226563 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. In vivo analysis of the stability and transport of nuclear poly(A) + RNA. J. Cell Biol. 126, 877–899 (1994).

    Article  CAS  PubMed  Google Scholar 

  168. Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dopie, J., Sweredoski, M. J., Moradian, A. & Belmont, A. S. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol. 219, e201910207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Giudice, J. & Jiang, H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat. Rev. Mol. Cell Biol. 25, 683–700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sung, H.-M. et al. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J. Cell Biol. 222, e202111151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Merens, A.-M. Raicu and L. Hansen for critical reading of the manuscript. This work was supported by a Parkinson’s Foundation Postdoctoral fellowship to I.L.P.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to L. Stirling Churchman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jimena Giudice, who co-reviewed with Gabrielle M. Gentile, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alternative splicing

A regulated process by which different combinations of exons and/or introns from a single gene can be included or excluded in the final mRNA, allowing multiple protein isoforms to be produced from a single gene.

Alternative untranslated regions

(UTRs). Different versions of untranslated regions that can be included in the final mRNA through alternative splicing, alternative polyadenylation or alternative transcription start sites.

Branch point

An intronic adenosine, typically located 18–40 nt upstream of the 3′ splice site, whose 2′-OH group attacks the 5′ splice site in the first step of splicing, creating a characteristic branched intermediate (lariat).

Cleavage and polyadenylation

(CPA). The process of cutting the primary transcript at a specific site and adding a poly(A) tail to create the 3′-end of mature mRNA.

Cleavage and polyadenylation sites

(PAS). Specific sequences in the pre-mRNA that signal where the transcript should be cleaved and polyadenylated.

Detained intron

A class of introns that are retained in nucleus-localized transcripts until specific signals trigger their removal and export of the transcript from the nucleus, serving as a regulatory mechanism for gene expression.

m6A

N6-methyladenosine, an RNA chemical modification consisting of a methyl group added to the nitrogen at position 6 of adenosine.

Metabolic labelling

A technique in which cells are grown with nucleotide analogues that are incorporated into newly synthesized RNA, which can be specifically isolated or detected using biochemical methods, allowing to track new RNA synthesis and processing.

MicroRNAs

Small non-coding RNAs (21–23 nt) that regulate gene expression post-transcriptionally, generally through binding sites in 3′ untranslated regions.

mRNA

A class of RNA molecules that unlike non-coding RNAs carry coding information and are translated into proteins by ribosomes.

Nonsense-mediated decay

(NMD). A quality control mechanism that degrades mRNAs containing premature stop codons in the cytoplasm.

Nuclear degradation

The breakdown of RNA molecules within the nucleus, serving as a quality control mechanism and regulatory process. This occurs through multiple pathways including the nuclear exosome.

Nuclear speckles

Membrane-less nuclear compartments enriched in pre-mRNA splicing factors, RNA-processing factors and partially processed mRNAs.

PUND

Genes encoding transcripts that are predicted to undergo nuclear degradation rather than be processed into mRNA based on subcellular fractionation, metabolic labelling, mathematical modelling and/or knockdown of nuclear exosome subunits.

RNA polymerase II

(Pol II). The enzyme responsible for transcribing all eukaryotic protein-coding genes and many non-coding RNA genes. Its largest subunit contains a C-terminal domain that undergoes dynamic phosphorylation during transcription, coordinating various RNA processing events.

RNA-binding proteins

(RBPs). Proteins that bind to RNA, typically by recognizing specific sequences or structures, and regulate processes including splicing, polyadenylation, export, localization, stability and translation.

Serine–arginine (SR) proteins

A family of proteins that have crucial roles in constitutive and alternative splicing. They are characterized by one or more RNA recognition motif(s) and a domain rich in serine–arginine dipeptides (RS domain). Dynamic phosphorylation of the RS domain regulates their activity, localization and function.

Splice sites

Specific sequences at the start (5′-end) and end (3′-end) of introns that are recognized by the spliceosome.

Subcellular fractionation

Separation of subcellular compartments through differential centrifugation and/or biochemical extraction, yielding cytoplasmic, nucleoplasmic and chromatin-associated fractions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choquet, K., Patop, I.L. & Churchman, L.S. The regulation and function of post-transcriptional RNA splicing. Nat Rev Genet 26, 378–394 (2025). https://doi.org/10.1038/s41576-025-00836-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-025-00836-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing