What is a drop out rate in keras?

This recipe explains what is a drop out rate in keras

Recipe Objective

Drop out rate in keras

Drop out is a powerful regularization technique for neural networks and deep learning models.

In the dropout technique, randomly selected neurons are ignored during training. Their contribution to the activation of downstream neurons is temporally removed on the forward pass then any weight updates are not applied to the neuron on the backward pass.

Dropout can be implemented by randomly selecting any nodes to be dropped with a given probability (10% or 0.1) each weight update cycle. Dropout is only used during the training of a model is not used when evaluating the skill of the model.

Complete Guide to Tensorflow for Deep Learning with Python for Free

Step 1- Import Libraries

#importing Libraries import pandas as pd import numpy as np from keras.datasets import mnist from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from tensorflow.keras import layers

Step 2- Load the dataset

#Loading Dataset (X_train, y_train), (X_test, y_test) = mnist.load_data()

Step 3- Defining the model and then define the layers, kernel initializer, and its input nodes shape.

We will define the model and then define the layers, kernel initializer, and its input nodes shape.

#Model model = Sequential() model.add(layers.Dense(64, kernel_initializer='uniform', input_shape=(10,)))

Step 4- We will define the activation function as relu

model.add(layers.Activation('relu'))

Step 5- Adding Layers.

We will add layers by using 'add', we will specify the dropout rate as 0.2 and 0.1 for both the layers

#Adding Layers model.add(Dense(512)) model.add(Dropout(0.2)) model.add(Dense(256, activation='relu')) model.add(Dropout(0.1))

Step 6- Printing the model

We will Print the model

print(model)

 

What Users are saying..

profile image

Abhinav Agarwal

Graduate Student at Northwestern University
linkedin profile url

I come from Northwestern University, which is ranked 9th in the US. Although the high-quality academics at school taught me all the basics I needed, obtaining practical experience was a challenge.... Read More

Relevant Projects

Insurance Pricing Forecast Using XGBoost Regressor
In this project, we are going to talk about insurance forecast by using linear and xgboost regression techniques.

Linear Regression Model Project in Python for Beginners Part 1
Machine Learning Linear Regression Project in Python to build a simple linear regression model and master the fundamentals of regression for beginners.

Image Segmentation using Mask R-CNN with Tensorflow
In this Deep Learning Project on Image Segmentation Python, you will learn how to implement the Mask R-CNN model for early fire detection.

Classification Projects on Machine Learning for Beginners - 1
Classification ML Project for Beginners - A Hands-On Approach to Implementing Different Types of Classification Algorithms in Machine Learning for Predictive Modelling

Loan Eligibility Prediction in Python using H2O.ai
In this loan prediction project you will build predictive models in Python using H2O.ai to predict if an applicant is able to repay the loan or not.

Build a Wealth Management Agentic AI Chatbot with MS Fabric
In this Agentic AI project , you will learn to build an intelligent financial assistant that autonomously analyzes your financial data, assesses risks, and designs personalized investment strategies, making wealth management more efficient and personalized to your needs

Many-to-One LSTM for Sentiment Analysis and Text Generation
In this LSTM Project , you will build develop a sentiment detection model using many-to-one LSTMs for accurate prediction of sentiment labels in airline text reviews. Additionally, we will also train many-to-one LSTMs on 'Alice's Adventures in Wonderland' to generate contextually relevant text.

FEAST Feature Store Example for Scaling Machine Learning
FEAST Feature Store Example- Learn to use FEAST Feature Store to manage, store, and discover features for customer churn prediction machine learning project.

AWS MLOps Project to Deploy Multiple Linear Regression Model
Build and Deploy a Multiple Linear Regression Model in Python on AWS

Autogen Project to Build an Intelligent AI Personal Assistant
Build a multi-agent AI personal assistant using Autogen that can handle tasks like managing calendars, emails, reminders, messaging, research, and weather updates, automating everyday workflows with LLMs and tool integrations. This is an upcoming project that is expected to be launched in June.