Aastveit, K. A., Ravazzolo, F., and van Dijk, H. K. (2018). Combined density nowcasting in an uncertain economic environment. Journal of Business Economics & Statistics, 36(1):131–145.
Ahelgebey, D. F., Billio, M., and Casarin, R. (2016a). Bayesian Graphical Models for Structural Vector Autoregressive Processes. Journal of Applied Econometrics, 31(2):357–386.
- Ahelgebey, D. F., Billio, M., and Casarin, R. (2016b). Sparse Graphical Vector Autoregression: A Bayesian Approach. Annals of Economics and Statistics, 123:333–361.
Paper not yet in RePEc: Add citation now
BanÃŒÂbura, M., Giannone, D., and Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25:71–92.
Bassetti, F., Casarin, R., and Leisen, F. (2014). Beta-product dependent PitmanYor processes for Bayesian inference. Journal of Econometrics, 180(1):49–72.
Bassetti, F., Casarin, R., and Ravazzolo, F. (2018). Bayesian nonparametric calibration and combination of predictive distributions. Journal of the American Statistical Association, 1:1–30.
- Bassetti, F., Casarin, R., and Rossini, L. (2020). Hierarchial hierarchical species sampling models. Bayesian Analysis.
Paper not yet in RePEc: Add citation now
- Bates, J. M. and Granger, C. W. J. (1969). Combination of Forecasts. Operational Research Quarterly, 20:451–468.
Paper not yet in RePEc: Add citation now
Bianchi, D., Billio, M., Casarin, R., and Guidolin, M. (2019). Modeling systemic risk with markov switching graphical sur models. Journal of Econometrics, 210(1):58– 74.
Billio, M., Casarin, R., and Rossini, L. (2019). Bayesian nonparametric sparse var models. Journal of Econometrics, 212(1):97–115.
Billio, M., Casarin, R., Ravazzolo, F., and Van Dijk, H. (2016). Interactions between eurozone and US booms and busts: A Bayesian panel Markov-switching VAR model. Journal of Applied Econometrics, 31(7):1352–1370.
Billio, M., Casarin, R., Ravazzolo, F., and van Dijk, H. K. (2013). Timevarying combinations of predictive densities using nonlinear filtering. Journal of Econometrics, 177:213–232.
Carriero, A., Kapetanios, G., and Marcellino, M. (2016). Structural analysis with multivariate autoregressive index models. Journal of Econometrics, 192(2):332– 348.
Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. Journal of the American Statistical Association, 103(484):1438–1456.
Casarin, R., Grassi, S., Ravazzolo, F., and Van Dijk, H. (2015). Dynamic predictive density combinations for large data sets in economics and finance. Technical report, Tinbergen Institute Discussion Paper 15-084/III.
Choi, H. and Varian, H. (2012). Predicting the present with Google trends. Economic Record, 88:2–9.
Conflitti, C., De Mol, C., and Giannone, D. (2015). Optimal combination of survey forecasts. International Journal of Forecasting, 31(4):1096–1103.
- Cubadda, G. and Guardabascio, B. (2017). Representation, estimation and forecasting of the multivariate index-augmented autoregressive mode. Technical report, CEIS Research Paper 397, Tor Vergata University.
Paper not yet in RePEc: Add citation now
Cubadda, G. and Guardabascio, B. (2019). Optimal combination of survey forecasts. Representation, estimation and forecasting of the multivariate index-augmented autoregressive model, 35(7):67–79.
Diebold, F. and Pauly, P. (1990). The use of prior information in forecast combination. International Journal of Forecasting, 6:503–508.
- Diebold, F. X. and Pauly, P. (1987). Structural change and the combination of forecasts. Journal of Forecasting, 6:21–40.
Paper not yet in RePEc: Add citation now
- Einav, L. and Levin, J. (2014). Economics in the age of big data. Science, 346(6210):715–718.
Paper not yet in RePEc: Add citation now
- Gabriel Fagan, J. M. (2006). Econometric Models of the Euro-area Central Banks. Elgar.
Paper not yet in RePEc: Add citation now
Gefang, D. (2014). Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage. International Journal of Forecasting, 30(30):1–11.
George, E. I., Sun, D., and Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1):553–580.
- Geweke, J. and Amisano, G. (2010). Optimal prediction pools. Journal of Econometrics, 164(2):130–141.
Paper not yet in RePEc: Add citation now
Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102:359–378.
Gneiting, T. and Ranjan, R. (2011). Comparing density forecasts using threshold and quantile weighted scoring rules. Journal of Business and Economic Statistics, 29:411–422.
- Gneiting, T. and Ranjan, R. (2013). Combining predicitve distributions. Electronic Journal of Statistics, 7:1747–1782.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J. (1998). Extracting information from mega-panels and highfrequency data. Statistica Neerlandica, 52:258–272.
Paper not yet in RePEc: Add citation now
Groen, J. J. J., Paap, R., and Ravazzolo, F. (2013). Real-time inflation forecasting in a changing world. Journal of Business & Economic Stastistics, 31:29–44.
- Harrison, L. anad Penny, W. D. and Friston, K. (2003). Multivariate autoregressive modeling of fmri time series. NeuroImage, 19:1477–1491.
Paper not yet in RePEc: Add citation now
Hendry, D. F. and Martinez, A. B. (2017). Evaluating multi-step system forecasts with relatively few forecast-error observations. International Journal of Forecasting, 33(2):359 – 372.
Hsu, N.-J., Hung, H.-L., and Chang, Y.-M. (2008). Subset selection for vector autoregressive processes using lasso. Computational Statistics and Data Analysis, 52:3645–3657.
- Hytti, H., Takalo, R., and Ihalainen, H. (2006). Tutorial on multivariate autoregressive modelling. Journal of Clinical Monitoring and Computing, 20(2):101–108.
Paper not yet in RePEc: Add citation now
- Ives, A. R., Dennis, B., Cottingham, K. L., and Carpenter, S. R. (2003). Estimating community stability and ecological interactions from time-series data. Ecological Monographs, 301-330:73.
Paper not yet in RePEc: Add citation now
Kapetanios, G., Mitchell, J., Price, S., and Fawcett, N. (2015). Generalised density forecast combinations. Journal of Econometrics, 188:150–165.
Koop, G. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2):177–203.
- Koop, G. and Korobilis, D. (2012). Forecasting inflation using dynamic model averaging. International Economic Review, 53:867–886.
Paper not yet in RePEc: Add citation now
Koop, G. and Korobilis, D. (2013). Large time-varying parameter VARs. Journal of Econometrics, 177:185–198.
- Koop, G., Korobilis, D., and Pettenuzzo, D. (2017). Bayesian compressed VARs. Journal of Econometrics, 1:1–30.
Paper not yet in RePEc: Add citation now
Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2):204–230.
Korobilis, D. (2016). Prior selection for panel vector autoregressions. Computational Statistics & Data Analysis, 101:110–120.
- Lan, A. S., Waters, A. E., Studer, C., and Baraniuk, R. G. (2014). Sparse factor analysis for learning and content analytics. Journal of Machine Learning Research, 15:1959–2008.
Paper not yet in RePEc: Add citation now
- Lerch, S., Thorarinsdottir, T., Ravazzolo, R., and Gneiting, T. (2016). Forecaster’s dilemma: Extreme events and forecast evaluation. Statistical Science, 32(1):106– 127.
Paper not yet in RePEc: Add citation now
- Litterman, R. (1980). Techniques for forecasting with vector autoregressions. University of Minnesota, Ph.D. Dissertation.
Paper not yet in RePEc: Add citation now
- Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer, Berlin.
Paper not yet in RePEc: Add citation now
Marcellino, M., Stock, J. H., and Watson, M. W. (2006). A comparison of direct and iterated multistep ar methods for forecasting macroeconomic time series. Journal of Econometrics, 135(1):499 – 526.
McCracken, M. W. and Ng, S. (2015). FRED-MD: A monthly database for macroeconomic research. NBER Working paper 2015-012.
Medeiros, M., Veiga, A., Vasconcelos, G., and Zilberman, E. (2018). Forecasting inflation in a data-rich enviroment: the benefits of machine learning methods. Technical report, SSRN.
Mitchell, J. and Hall, S. G. (2005). Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESER “fan†charts of inflation. Oxford Bulletin of Economics and Statistics, 67:995– 1033.
Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482):681–686.
- Penny, W. and Harrison, L. (2006). Chapter 40: Multivariate autoregressive models.
Paper not yet in RePEc: Add citation now
Pettenuzzo, D. and Ravazzolo, F. (2016). Optimal portfolio choice under decisionbased model combinations. Journal of Applied Econometrics, 31(7):1312–1332.
Qi, X., Luo, R., and Zhao, H. (2013). Sparse principal component analysis by choice of norm. Journal of Multivariate Analysis, 114:127 – 160.
- Raftery, A. E., KaÃŒÂrnÃŒÂy, M., and Ettler, P. (2010). Online prediction under model uncertainty via Dynamic Model Averaging: Application to a cold rolling mill. Technometrics, 52:52–66.
Paper not yet in RePEc: Add citation now
- Reinsel, G. (1983). Some results on multivariate autoregressive index models. Biometrika, 70(1):145–156.
Paper not yet in RePEc: Add citation now
Ročkovà, V. and George, E. I. (2016). Fast bayesian factor analysis via automatic rotations to sparsity. Journal of the American Statistical Association, 111(516):1608–1622.
Schorfheide, F. (2005). VAR forecasting under misspecification. Journal of Econometrics, 128(1):99 – 136.
Sims, C. A. and Zha, T. (1998). Bayesian methods for dynamic multivariate models. International Economic Review, 39(4):949–968.
Stock, J. H. and Watson, W. M. (2002). Forecasting using principal components from a large number of predictors. Journal of American Statistical Association, 97:1167–1179.
Stock, J. H. and Watson, W. M. (2004). Combination forecasts of output growth in a seven - country data set. Journal of Forecasting, 23:405–430.
Stock, J. H. and Watson, W. M. (2005). Implications of dynamic factor models for VAR analysis. Technical report, NBER Working Paper No. 11467.
Stock, J. H. and Watson, W. M. (2012). Disentangling the channels of the 2007-09 recession. Brookings Papers on Economic Activity, pages 81–156, Spring.
Stock, J. H. and Watson, W. M. (2014). Estimating turning points using large data sets. Journal of Econometris, 178:368–381.
- Varian, H. (2014). Machine learning: New tricks for econometrics. Journal of Economics Perspectives, 28:3–28.
Paper not yet in RePEc: Add citation now
- Varian, H. and Scott, S. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5:4–23.
Paper not yet in RePEc: Add citation now
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67:301–320.
- Zou, H., Choi, J., and Oehlert, G. (2011). A penalized maximum likelihood approach to sparse factor analysis. Statistics and its Interface, 3:429–436.
Paper not yet in RePEc: Add citation now