A. Lewis. A simple option formula for general jump-diïusion and other exponential Levy processes. available from http://www.optioncity.net, 2001.
- A. Lipton. Mathematical Methods For Foreign Exchange: A Financial Engineerâs Approach. World Scientiïc, 2001.
Paper not yet in RePEc: Add citation now
- A. Ralston and P. Rabinowitz. A ïrst course in Numerical Analysis. Dover Publications, 2001.
Paper not yet in RePEc: Add citation now
C. J. Corrado and T. W. Miller. A note on a simple, accurate formula to compute implied standard deviations. Journal of Banking and Finance, 20:595â603, 1996.
D. Bates. Jump and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review of Financial Studies, 9:69â107, 1996.
D. Madan and E. Seneta. The variance gamma (VG) model for share market returns. J. Business, 63:511â524, 1990.
D. Madan, P. Carr, and E. Chang. The variance gamma process and option pricing. European Finance Review, 2:79â105, 1998.
- D. Madan. Financial modeling with discontinuous price processes, Barndorï-Nielson, O., Mikosch, T., and Resnick, S., eds. In Levy Processes - Theory and Applications. Birkhauser: Boston, 2001.
Paper not yet in RePEc: Add citation now
- D.B. Madan and M. Yor. Representing the CGMY and Meixner Levy processes as time changed Brownian motions. The Journal of Computational Finance, 12:27â47, 2008.
Paper not yet in RePEc: Add citation now
E. Eberlein, K. Glau, and A. Papapantoleon. Analysis of Fourier transform valuation formulas and applications. Applied Mathematical Finance, 17:211â240, 2010.
E. Eberlein, U. Keller, and K. Prause. New insights into smile, mispricing and value at risk. J. Business, 71:371â 406, 1998.
F. Fang and C.W. Oosterlee. A novel pricing method for European options based on Fourier-Cosine series expansions. SIAM J. Sci. Comput., 31:826â848, 2008.
- Filippo Fiorani. The Variance-Gamma process for option pricing. IV Workshop di Finanza Quantitativa, International Centre for Economic Research (ICER), Torina, Italy, 2003.
Paper not yet in RePEc: Add citation now
- H. Geman, D. Madan, and M. Yor. Time changes for Levy processes. Mathematical Finance, 11:79â96, 2001.
Paper not yet in RePEc: Add citation now
- H. Geman. Pure jump Levy processes for asset price modeling. Journal of Banking and Finance, 26:1297â1316, 2002.
Paper not yet in RePEc: Add citation now
- J. Bertoin. Levy Processes. Cambride University Press, Cambridge, 1996.
Paper not yet in RePEc: Add citation now
- J. Gatheral. The Volatility Surface: A Practitionerâs Guide. Wiley Finance, 2006.
Paper not yet in RePEc: Add citation now
- J. Morris. Computational Methods in Elementary Numerical Analysis. John Wiley & Sons, 1983.
Paper not yet in RePEc: Add citation now
J.C. Cox, J.E. Ingersoll, and S.A. Ross. A theory of the term structure of interest rates. Econometrica, 53:385â 407, 1985.
- K. Detlefsen and W.K. Hardle. Calibration risk for exotic options. The Journal of Derivatives, 2007.
Paper not yet in RePEc: Add citation now
- K. Gao and R. Lee. Asymptotics of implied volatility to arbitrary order. http://ssrn.com/abstract=1768383, 2011.
Paper not yet in RePEc: Add citation now
- K. Sato. Levy Processes and Inïnitely Divisible Distributions. Cambridge University Press, 1999. MARTIJN PISTORIUS AND JOHANNES STOLTE
Paper not yet in RePEc: Add citation now
- L. Andersen. Eïcient simulation of the Heston stochastic volatility model. Journal of Computational Finance, 11:1â42, 2007.
Paper not yet in RePEc: Add citation now
- M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publications, 1965.
Paper not yet in RePEc: Add citation now
- M. Brenner and M. Subrahmanyam. A simple formula to compute the implied standard deviation. Financial Analyst Journal, 44:80â83, 1988.
Paper not yet in RePEc: Add citation now
- M. Broadie and O. Kaya. Exact simulation of stochastic volatility and other aïne jump diïusion processes. Operations Research, 54:217â231, 2006.
Paper not yet in RePEc: Add citation now
M. Leippold and L. Wu. Asset pricing under the quadratic class. Journal of Financial and Quantitative Analysis, 37(2):271â295, 2002.
M. Li. Approximate inversion of the Black-Scholes formula using rational functions. European Journal of Operational Research, 185:743â759, 2008.
- O. Barndorï-Nielson. Processes of normal inverse Gaussian type. Finance Stoch., pages 41 â 68, 1998.
Paper not yet in RePEc: Add citation now
- P. Carr and D. Madan. Option valuation using the fast Fourier transform. Journal of Computational Finance, 2:753 â 778, 1998.
Paper not yet in RePEc: Add citation now
P. Carr, H. Geman, D. Madan, and M. Yor. Stochastic volatility for Levy processes. Mathematical Finance, 13:345â382, 2003.
- P. Carr, H. Geman, D. Madan, and M. Yor. The ïne structure of asset returns: An empirical investigation. Journal of Business, 75, 2002.
Paper not yet in RePEc: Add citation now
- P. Glasserman and K.K. Kim. Gamma expansion of the Heston stochastic volatility model. Finance and Stochastics, Springer Berlin/Heidelberg:1â30, 2009.
Paper not yet in RePEc: Add citation now
- P. Jackel. By Implication. Wilmott, 26:60â66, 2006. FAST COMPUTATION OF VANILLA OPTIONS AND IMPLIED VOLATILITIES 27
Paper not yet in RePEc: Add citation now
P.K Clark. A subordinated stochastic process model with ïnite variance for speculative prices. Econometrica, 41:135â155, 1973.
- R. Cont and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC, 2004.
Paper not yet in RePEc: Add citation now
R. Merton. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125 â 144, 1976.
- R.W. Lee. Option pricing by transform methods: extensions, uniïcations and error control. Journal of Computational Finance, 7, 2004.
Paper not yet in RePEc: Add citation now
- S. Boyachenko and S. Levendorskii. New eïcient methods of Fourier transform methods in applications to option pricing. http://ssrn.com/abstract=1846633, 2011.
Paper not yet in RePEc: Add citation now
- S. Manaster and G. Koehler. The calculation of implied variances from the Black-Scholes model: A note. The Journal of Finance, 37:227â230, 1982.
Paper not yet in RePEc: Add citation now
- S. Raible. Levy Processes in Finance: Theory, Numerics and Empirical Facts. PhD thesis, Freiburg University, 2000.
Paper not yet in RePEc: Add citation now
- S.G. Kou. A jump-diïusion model for option pricing. Management Science, 48:1086â1101, 2002.
Paper not yet in RePEc: Add citation now
S.L. Heston. A closed-form solution for options with stochastic volatility with applications to bonds and currency options. Review of Financial Studies, 6:327â343, 1993.
- W. Press, S. A. Teukolsky, W. T. Vetterling, and Flannery B. Numerical recipes in C++. Cambridge University Press, 2002.
Paper not yet in RePEc: Add citation now