- Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions. Dover Publications, Inc.
Paper not yet in RePEc: Add citation now
Andersen, L. and Andreasen, J. (2000). Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research, 4:231–262.
- Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. In Proceedings of the Royal Society of London, volume A, pages 401–419.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. (1998). Processes of Normal Inverse Gaussian type. Finance and Stochastics, 2:41–68.
Paper not yet in RePEc: Add citation now
- Carr, P. and Madan, D. (1999). Option valuation using the Fast Fourier Transform. Journal of Computational Finance, 2(4):61–73.
Paper not yet in RePEc: Add citation now
- Cont, R. and Tankov, P. (2004). Financial modelling with jump processes. Financial Matematics Series, Chapman & Hall /CRCl.
Paper not yet in RePEc: Add citation now
- Cont, R. and Voltchkova, E. (2003). A finite difference scheme for option pricing in jump diffusion and exponential L evy models. Technical Report 513, Rapport Interne CMAP.
Paper not yet in RePEc: Add citation now
- d’Halluin, Y., Forsyth, P. A., and Labahn, G. (2005a). A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM Journal on Scientific Computing, 27:315–345.
Paper not yet in RePEc: Add citation now
- d’Halluin, Y., Forsyth, P. A., and Vetzal, K. R. (2004). A penalty method for American options with jump diffusion processes. Numerische Mathematik, 97:321–352.
Paper not yet in RePEc: Add citation now
- d’Halluin, Y., Forsyth, P. A., and Vetzal, K. R. (2005b). Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numerical Analysi, 25:87–112.
Paper not yet in RePEc: Add citation now
- de Lange, O. L. and Raab, R. E. (1992). Operator Methods in Quantum Mechanics. Oxford science publications. Chapter 3.
Paper not yet in RePEc: Add citation now
- Denman, E. and Beavers, A. (1976). The matrix sign function and computations in systems. Applied Mathematics and Computation, 2(1):63–94.
Paper not yet in RePEc: Add citation now
- Duffy, D. (2006). Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. The Wiley Finance Series.
Paper not yet in RePEc: Add citation now
- Dyakonov, E. (1964). Difference schemes with a separable operator for general second order parabolic equations with variable coefficient. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 4(2):278–291.
Paper not yet in RePEc: Add citation now
- Eberlein, E. (2009). Jump-type L evy processes. In Andersen, T. G., Davis, R. A., Kreiß, J.-P., and Mikosch, T., editors, Handbook of Financial Time Series, pages 439–455. Springer Verlag.
Paper not yet in RePEc: Add citation now
- Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1:281–299.
Paper not yet in RePEc: Add citation now
Eberlein, E., Keller, U., and Prause, K. (1998). New insights into smile, mispricing, and value at risk: The hyperbolic model. Journal of Business, 71(3):371–406.
- Elhashash, A. and Szyld, D. (2008). Generalizations of M-matrices which may not have a nonnegative inverse. Linear Algebra and its Applications, 429:2435–2450.
Paper not yet in RePEc: Add citation now
Fang, F. and Oosterlee, C. (2008). A novel pricing method for European options based on Fourier-Cosine series expansions. SIAM J Sci Comput, 31(2):826–848.
- Following Le and McDonald (2006) denote indexλ(A) to be the degree of λ as a root of the minimal polynomial of A. As matrix P doesn’t have zero eigenvalues in its spectrum index0(P) = 0 < 1.
Paper not yet in RePEc: Add citation now
- Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3):155–239.
Paper not yet in RePEc: Add citation now
- Hout, K. J. I. and Foulon, S. (2010). ADI finite difference schemes for option pricing in the Heston model with correlation. International journal of numerical analysis and modeling, 7(2):303–320.
Paper not yet in RePEc: Add citation now
Itkin, A. (2014). Efficient solution of backward jump-diffusion PIDEs with splitting and matrix exponentials. Journal of Computational Finance, forthcoming. electronic version is available at http://arxiv.org/abs/1304.3159.
Itkin, A. and Carr, P. (2012). Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models. Computational Economics, 40(1):63–104.
- Koch, O. and Thalhammer, M. (2011). Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Technical report, Institute for Analysis and Scientific Computing, Vienna University of Technology.
Paper not yet in RePEc: Add citation now
- Le, H. T. and McDonald, J. J. (2006). Inverses of M-type matrices created with irreducible eventually nonnegative matrices. Linear Algebra and its Applications, 419:668–674.
Paper not yet in RePEc: Add citation now
- Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential L evy processes. manuscript, Envision Financial Systems and OptionCity.net, Newport Beach, California, USA.
Paper not yet in RePEc: Add citation now
- Lipton, A. (2001). Mathematical Methods For Foreign Exchange: A Financial Engineer’s Approach. World Scientific.
Paper not yet in RePEc: Add citation now
Lord, R., Fang, F., Bervoets, F., and Oosterlee, K. (2007). A fast and accurate FFT-based method for pricing early-exercise options under L evy processes. Technical report, MRPA. available at http://mpra.ub.uni-muenchen.de/1952/.
- Marchuk, G. (1975). Methods of Numerical Mathematics. Springer-Verlag.
Paper not yet in RePEc: Add citation now
- Noutsos, D. and Tsatsomeros, M. J. (2008). Reachability and holdability of nonegative states. SIAM J. Matrix Anal. Appl., 30(2):700–712.
Paper not yet in RePEc: Add citation now
- Olver, F., Lozier, D., Boisvert, R., and Clark, C. (2010). Handbook of Mathematical Functions. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Samarski, A. (1964). Economical difference schemes for parabolic equations with mixed derivatives. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 4(4):753–759.
Paper not yet in RePEc: Add citation now
- Schoutens, W. (2001). Meixner processes in finance. Technical report, K.U.Leuven Eurandom.
Paper not yet in RePEc: Add citation now
- Schoutens, W. (2003). Levy Processes in Finance: Pricing Financial Derivatives. Wiley.
Paper not yet in RePEc: Add citation now
- Schoutens, W. and Teugels, J. (1998). L evy processes, polynomials and martingales. Commun. Statist.- Stochastic Models, 14(1,2):335–349.
Paper not yet in RePEc: Add citation now
- Spanier, J. and Oldham, K. (1987). An Atlas of Functions. Washingtone DC. Hemisphere. ch. 51, The Bessel Kν(x).
Paper not yet in RePEc: Add citation now
- Strang, G. (1968). On the construction and comparison of difference schemes. SIAM J. Numerical Analysis, 5:509–517.
Paper not yet in RePEc: Add citation now
- Wang, I., Wan, J., and Forsyth, P. (2007). Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance, 4:31–70.
Paper not yet in RePEc: Add citation now
- We also need the following Lemma from Noutsos and Tsatsomeros (2008): Lemma A.1 Let A ∈ RN×N . The following are equivalent: 1. A is eventually exponentially nonnegative. 2. A + bI is eventually nonnegative for some b ≥ 0. 3. AT + bI is eventually nonnegative for some b ≥ 0.
Paper not yet in RePEc: Add citation now
- Yanenko, N. (1971). The method of fractional steps. Springer-Verlag.
Paper not yet in RePEc: Add citation now