ACERBI, C. Spectral measures of risk: a coherent representation of subjective risk aversion. Journal of Banking & Finance, v. 26, n. 7, p. 1505-1518, 2002.
ACERBI, C.; TASCHE, D. Expected Shortfall: a natural coherent alternative to value at risk. Economic Notes, v. 31, n. 2, p. 379-388, 2002b.
ACERBI, C.; TASCHE, D. On the coherence of expected shortfall. Journal of Banking & Finance, v. 26, n. 7, p. 1487-1503, 2002a.
AHMADI-JAVID, A. Entropic value-at-risk: a new coherent risk measure. Journal of Optimization Theory and Applications, v. 155, n. 3, p. 1105-1123, 2012.
ALEXANDER, G. J.; BAPTISTA, A. M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science, v. 50, n. 9, p. 12611273, 2004.
ANGELIDIS, T.; BENOS, A.; DEGIANNAKIS, S. A robust VaR model under different time periods and weighting schemes. Review of Quantitative Finance and Accounting, v. 28, n. 2, p. 187-201, 2007.
ARTZNER, P.; DELBAEN, F.; EBER, J.-M.; HEATH, D. Coherent measures of risk. Mathematical Finance, v. 9, n. 3, p. 203-228, 1999.
- BÄUERLE, N.; MÜLLER, A. Stochastic orders and risk measures: consistency and bounds. Insurance: Mathematics and Economics, v. 38, n. 1, p. 132-148, 2006.
Paper not yet in RePEc: Add citation now
BALI, T. G.; DEMIRTAS, K. O; LEVY, H. Is there an intertemporal relation between downside risk and expected returns? Journal of Financial and Quantitative Analysis, v. 44, n. 4, p. 883-909, 2009.
- BAMBERG, G.; NEUHIERL, A. On the non-existence of conditional value-at-risk under heavy tails and short sales. OR Spectrum, v. 32, n. 1, p. 49-60, 2010.
Paper not yet in RePEc: Add citation now
- BELLES-SAMPERA, J.; GUILLÉN, M.; SANTOLINO, M. Beyond value-at-risk: GlueVaR distortion risk measures. Risk Analysis, v. 34, n. 1, p. 121-134, 2014.
Paper not yet in RePEc: Add citation now
BELLINI, F.; KLAR, B.; MÜLLER, A.; ROSAZZA GIANIN, E. Generalized quantiles as risk measures. Insurance: Mathematics and Economics, v. 54, p. 41-48, 2014.
BELZUNCE, F.; PINAR, J. F.; RUIZ, J. M.; SORDO, M. A. Comparison of risks based on the expected proportional shortfall. Insurance: Mathematics and Economics, v. 51, n. 2, p. 292302, 2012.
BERTSIMAS, D.; LAUPRETE, G. J.; SAMAROV, A. Shortfall as a risk measure: properties, optimization and applications. Journal of Economic Dynamics and Control, v. 28, n. 7, p. 1353-1381, 2004.
CHEN, Z.; WANG, Y. Two-sided coherent risk measures and their application in realistic portfolio optimization. Journal of Banking & Finance, v. 32, n. 12, p. 2667-2673, 2008.
CHEN, Z.; YANG, L. Nonlinearly weighted convex risk measure and its application. Journal of Banking & Finance, v. 35, n. 7, p. 1777-1793, 2011.
CHERNY, A. S. Weighted V@R and its properties. Finance and Stochastics, v. 10, n. 3, p. 367-393, 2006.
CHERNY, A. S.; GRIGORIEV, P. G. Dilatation monotone risk measures are law invariant. Finance and Stochastics, v. 11, n. 2, p. 291-298, 2007.
- CHRISTOFFERSEN, P.; GONÇALVES, S. Estimation risk in financial risk management. Journal of Risk, v. 7, n. 3, p. 1-28, 2005.
Paper not yet in RePEc: Add citation now
CONT, R.; DEGUEST, R.; SCANDOLO, G. Robustness and sensitivity analysis of risk measurement procedures. Quantitative Finance, v. 10, n. 6, p. 593-606, 2010.
- COSSETTE, H.; MAILHOT, M.; MARCEAU, É.; MESFIOUI, M. Bivariate lower and upper orthant value-at-risk. European Actuarial Journal, v. 3, n. 2, p. 321-357, 2013.
Paper not yet in RePEc: Add citation now
COUSIN, A.; DI BERNARDINO, E. On multivariate extensions of conditional-tailexpectation. Insurance: Mathematics and Economics, n. 55, p. 272-282. 2014.
COUSIN, A.; DI BERNARDINO, E. On multivariate extensions of value-at-risk. Journal of Multivariate Analysis, v. 119, p. 32-46, 2013.
DANÃELSSON, J.; JORGENSEN, B. N.; SAMORODNITSKY, G.; SARMA, M.; DE VRIES, C. G. Fat tails, VaR and subadditivity. Journal of Econometrics, v. 172, n. 2, p. 283-291, 2013. DEGIANNAKIS, S.; FLOROS, C.; DENT, P. Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: international evidence.
- DELBAEN, F. Coherent risk measures on general probability spaces. Advances in Finance and Stochastics, p. 1-37, 2002.
Paper not yet in RePEc: Add citation now
DHAENE, J.; LAEVEN, R. J. A.; VANDUFFEL, S.; DARKIEWICZ, G.; GOOVAERTS, M. J. Can acoherent risk measure be too subadditive? The Journal of Risk and Insurance, v. 75, n. 2, p. 365-386, 2008.
DOWD, K.; BLAKE, D. After VaR: the theory, estimation, and insurance applications of quantile-based risk measures. The Journal of Risk and Insurance, v. 73, n. 2, p. 193-229, 2006.
- DUFFIE, D.; PAN, J. An overview of value at risk. The Journal of Derivatives, v. 4, n. 3, p. 7-49, 1997. FISCHER, T. Risk capital allocation by coherent risk measures based on one-sided moments.
Paper not yet in RePEc: Add citation now
- EL KAROUI, N.; RAVANELLI, C. Cash subadditive risk measures and interest rate ambiguity. Mathematical Finance, v. 19, n. 4, p. 561-590, 2009.
Paper not yet in RePEc: Add citation now
- FÖLLMER, H.; KNISPEL, T. Entropic risk measures: coherence vs. convexity, model ambiguity and robust large deviations. Stochastics and Dynamics, v. 11, n. 02-03, p. 333-351, 2011.
Paper not yet in RePEc: Add citation now
FÖLLMER, H.; SCHIED, A. Convex measures of risk and trading constraints. Finance and Stochastics, v. 6, n. 4, p. 429-447, 2002. FÖLLMER, H.; SCHIED, A. Stochastic finance: an introduction in discrete time. 3. ed.
FRITTELLI, M.; GIANIN, E. R. Putting order in risk measures. Journal of Banking & Finance, v. 26, p. 1473-1486, 2002.
- FURMAN, E.; LANDSMAN, Z. On some risk-adjusted tail-based premium calculation principles. Journal of Actuarial Practice, v. 13, p. 175-190, 2006b.
Paper not yet in RePEc: Add citation now
- FURMAN, E.; LANDSMAN, Z. Tail variance premium with applications for elliptical portfolio of risks. ASTIN Bulletin, v. 36, n. 2, p. 433-462, 2006a.
Paper not yet in RePEc: Add citation now
GRECHUK, B.; MOLYBOHA, A.; ZABARANKIN, M. Maximum entropy principle with general deviation measures. Mathematics of Operations Research, v. 34, n. 2, p. 445-467, 2009.
GUÉGAN, D.; TARRANT, W. On the necessity of five risk measures. Annals of Finance, v. 8, n. 4, p. 533-552, 2012.
HAMEL, A.; RUDLOFF, B.; YANKOVA, M. Set-valued average value at risk and its computation. Mathematics and Financial Economics, v. 7, p. 229-246, 2013.
- INOUE, A. K. On the worst conditional expectation. Journal of Mathematical Analysis and Applications, v. 286, n. 1, p. 237-247, 2003.
Paper not yet in RePEc: Add citation now
- International Review of Financial Analysis, v. 27, p. 21-33, 2013.
Paper not yet in RePEc: Add citation now
- JADHAV, D.; RAMANATHAN, T.; NAIK-NIMBALKAR, U. Modified expected shortfall: a new robust coherent risk measure. Journal of Risk, v. 16, n. 1, p. 69-83. 2013.
Paper not yet in RePEc: Add citation now
JARROW, R. Put option premiums and coherent risk measures. Mathematical Finance, v. 12, n. 2, p. 135-142, 2002.
- JORION, P. Value at risk: the new benchmark for managing financial risk. 3. ed. Hardcover, 2007.
Paper not yet in RePEc: Add citation now
JOUINI, E.; SCHACHERMAYER, W.; TOUZI, N. Law invariant risk measures have the Fatou property. Advances in Mathematical Economics, v. 9, p. 49-71, 2006.
- KAINA, M.; RÜSCHENDORF, L. On convex risk measures on Lp -spaces. Mathematical Methods of Operations Research, v. 69, n. 3, p. 475-495, 2009.
Paper not yet in RePEc: Add citation now
KOU, S.; PENG, X.; HEYDE, C. External risk measures and basel accords. Mathematics of Operations Research, v. 38, n. 3, p. 393-417, 2013. KRÄTSCHMER, V. Robust representation of convex risk measures by probability measures.
KROKHMAL, P. A. Higher moment coherent risk measures. Quantitative Finance, v. 7, n. 4, p. 373-387, 2007.
KUESTER, K.; MITTNIK, S.; PAOLELLA, M. Value-at-risk prediction: a comparison of alternative strategies. Journal of Financial Econometrics, v. 4, n. 1, p. 53-89, 2006.
- KUSUOKA, S. On law invariant coherent risk measures. Advances in Mathematical Economics, v. 3, p. 83-95, 2001.
Paper not yet in RePEc: Add citation now
LEE, J.; PRÉKOPA, A. Properties and calculation of multivariate risk measures: MVaR and MCVaR. Annals of Operations Research, v. 211, n. 1, p. 225-254, 2013.
LEITNER, J. A short note on second-order stochastic dominance preserving coherent risk measures. Mathematical Finance, v. 15, n. 4, p. 649-651, 2005.
LEITNER, J. Balayage monotonous risk measures. International Journal of Theoretical and Applied Finance, v. 7, n. 7, p. 887-900, 2004.
- LONGIN, F. M. Beyond the VaR. The Journal of Derivatives, v. 8, n. 4, 36-48, 2001.
Paper not yet in RePEc: Add citation now
MARKOWITZ, H. Portfolio selection. The Journal of Finance, v. 7, n. 1, p. 77-91, 1952.
PÉRIGNON, C.; SMITH, D. R. The level and quality of value-at-risk disclosure by commercial banks. Journal of Banking & Finance, v. 34, n. 2, p. 362-377, 2010. PFLUG, G. C. Some remarks on the value-at-risk and the conditional value-at-risk.
- PRÉKOPA, A. Multivariate value at risk and related topics. Annals of Operations Research, v. 193, n. 1, p. 49-69, 2012.
Paper not yet in RePEc: Add citation now
PRITSKER, M. The hidden dangers of historical simulation. Journal of Banking & Finance, v. 30, n. 2, p. 561-582, 2006.
- Probabilistic Constrained Optimization, v. 49, p. 272-281, 2000.
Paper not yet in RePEc: Add citation now
ROCKAFELLAR, R. T.; URYASEV, S. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, v. 26, n. 7, p. 1443-1471, 2002.
ROCKAFELLAR, R. T.; URYASEV, S.; ZABARANKIN, M. Generalized deviations in risk analysis. Finance and Stochastics, v. 10, n. 1, p. 51-74, 2006. SORDO, M. A. Comparing tail variabilities of risks by means of the excess wealth order.
- STAUM, J. Excess invariance and shortfall risk measures. Operations Research Letters, v. 41, n. 1, p. 47-53, 2013. SVINDLAND, G. Continuity properties of law-invariant (quasi-)convex risk functions on L∞ .
Paper not yet in RePEc: Add citation now
TASCHE, D. Expected shortfall and beyond. Journal of Banking & Finance, v. 26, n. 7, p. 1519-1533, 2002.
- VALDEZ, E. A. Tail conditional variance for elliptically contoured distributions. Belgian Actuarial Bulletin, v. 5, n. 1, p. 26-36, 2005.
Paper not yet in RePEc: Add citation now
WANG, S. An actuarial index of the right-tail risk. North American Actuarial Journal, v. 2, n. 2, 88-101, 1998.
WONG, W. K.; FAN, G.; ZENG, Y. Capturing tail risks beyond VaR. Review of Pacific Basin Financial Markets and Policies, v. 15, n. 03, 2012.
- WU, G.; XIAO, Z. An analysis of risk measures. Journal of Risk, v. 4, n. 4, p. 53-76, 2002.
Paper not yet in RePEc: Add citation now
WYLIE, J. J.; ZHANG, Q.; KUEN SIU, T. Can expected shortfall and value-at-risk be used to statically hedge options? Quantitative Finance, v. 10, n. 6, p. 575-583, 2010.
YAMAI, Y.; YOSHIBA, T. Value-at-risk versus expected shortfall: a practical perspective. Journal of Banking & Finance, v. 29, p. 997-1015, 2005.