create a website

Large deviation principle for Volterra type fractional stochastic volatility models. (2018). Gulisashvili, Archil.
In: Papers.
RePEc:arx:papers:1710.10711.

Full description at Econpapers || Download paper

Cited: 22

Citations received by this document

Cites: 47

References cited by this document

Cocites: 35

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Volatility models in practice: Rough, Path-dependent or Markovian?. (2025). , Shaun ; Jaber, Eduardo Abi.
    In: Papers.
    RePEc:arx:papers:2401.03345.

    Full description at Econpapers || Download paper

  2. Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions. (2024). Qingshan, Yang ; Lihu, XU ; Hui, Jiang.
    In: Journal of Theoretical Probability.
    RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01354-0.

    Full description at Econpapers || Download paper

  3. Functional central limit theorems for rough volatility. (2024). Horvath, Blanka ; Jacquier, Antoine ; Sojmark, Andreas ; Muguruza, Aitor.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:28:y:2024:i:3:d:10.1007_s00780-024-00533-5.

    Full description at Econpapers || Download paper

  4. Large and moderate deviations for importance sampling in the Heston model. (2024). Uri, AN ; Geha, Marc ; Jacquier, Antoine.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05424-0.

    Full description at Econpapers || Download paper

  5. Functional central limit theorems for rough volatility. (2024). Horvath, Blanka ; Jacquier, Antoine ; Sojmark, Andreas ; Muguruza, Aitor.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:122848.

    Full description at Econpapers || Download paper

  6. Local volatility under rough volatility. (2023). Pigato, Paolo ; Friz, Peter K ; Bourgey, Florian ; de Marco, Stefano.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:33:y:2023:i:4:p:1119-1145.

    Full description at Econpapers || Download paper

  7. Reconstructing volatility: Pricing of index options under rough volatility. (2023). Wagenhofer, Thomas ; Friz, Peter K.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:33:y:2023:i:1:p:19-40.

    Full description at Econpapers || Download paper

  8. Short-time asymptotics for non self-similar stochastic volatility models. (2023). Pigato, Paolo ; Giorgio, Giacomo ; Pacchiarotti, Barbara.
    In: Papers.
    RePEc:arx:papers:2204.10103.

    Full description at Econpapers || Download paper

  9. Functional central limit theorems for rough volatility. (2023). Jacquier, Antoine ; Horvath, Blanka ; Muguruza, Aitor.
    In: Papers.
    RePEc:arx:papers:1711.03078.

    Full description at Econpapers || Download paper

  10. Large and moderate deviations for stochastic Volterra systems. (2022). Jacquier, Antoine ; Pannier, Alexandre.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:149:y:2022:i:c:p:142-187.

    Full description at Econpapers || Download paper

  11. The Laplace transform of the integrated Volterra Wishart process. (2022). Jaber, Eduardo Abi.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:32:y:2022:i:1:p:309-348.

    Full description at Econpapers || Download paper

  12. Reconstructing Volatility: Pricing of Index Options under Rough Volatility. (2022). Wagenhofer, Thomas ; Friz, Peter K.
    In: Papers.
    RePEc:arx:papers:2212.07817.

    Full description at Econpapers || Download paper

  13. Local volatility under rough volatility. (2022). Pigato, Paolo ; de Marco, Stefano ; Friz, Peter K ; Bourgey, Florian.
    In: Papers.
    RePEc:arx:papers:2204.02376.

    Full description at Econpapers || Download paper

  14. Multivariate Stochastic Volatility Models and Large Deviation Principles. (2022). Gulisashvili, Archil.
    In: Papers.
    RePEc:arx:papers:2203.09015.

    Full description at Econpapers || Download paper

  15. Large and moderate deviations for stochastic Volterra systems. (2022). Jacquier, Antoine ; Pannier, Alexandre.
    In: Papers.
    RePEc:arx:papers:2004.10571.

    Full description at Econpapers || Download paper

  16. Pathwise Asymptotics for Volterra Type Stochastic Volatility Models. (2021). Cellupica, Miriana ; Pacchiarotti, Barbara.
    In: Journal of Theoretical Probability.
    RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00992-4.

    Full description at Econpapers || Download paper

  17. Large deviations for fractional volatility models with non-Gaussian volatility driver. (2021). Gerhold, Stefan ; Gerstenecker, Christoph ; Gulisashvili, Archil.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:142:y:2021:i:c:p:580-600.

    Full description at Econpapers || Download paper

  18. Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness. (2021). Gulisashvili, Archil.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:139:y:2021:i:c:p:37-79.

    Full description at Econpapers || Download paper

  19. Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions. (2020). Gulisashvili, Archil.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:130:y:2020:i:6:p:3648-3686.

    Full description at Econpapers || Download paper

  20. A regularity structure for rough volatility. (2020). Friz, Peter K ; Gassiat, Paul ; Martin, Jorg ; Bayer, Christian ; Stemper, Benjamin.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:30:y:2020:i:3:p:782-832.

    Full description at Econpapers || Download paper

  21. Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model. (2020). Gulisashvili, Archil.
    In: Papers.
    RePEc:arx:papers:2006.15431.

    Full description at Econpapers || Download paper

  22. Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness. (2020). Gulisashvili, Archil.
    In: Papers.
    RePEc:arx:papers:2002.05143.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. A. Chronopoulou and F. G. Viens. Estimation and pricing under long-memory stochastic volatility. Annals of Finance, 8 (2012), 379-403.

  2. A. Chronopoulou and F. G. Viens. Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quantitative Finance, 12 (2012), 635-649.

  3. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer Science & Business Media, 2009.
    Paper not yet in RePEc: Add citation now
  4. A. Gulisashvili and E. M. Stein. Asymptotic behavior of distribution densities in models with stochastic volatility, I. Math. Finance, 20 (2010), 447-477.
    Paper not yet in RePEc: Add citation now
  5. A. Gulisashvili and E. M. Stein. Asymptotic behavior of the distribution of the stock price in models with stochastic volatility: the Hull-White model. Comptes Rendus de l’Académie des Sciences de Paris, Série I, 343 (2006), 519-523.
    Paper not yet in RePEc: Add citation now
  6. A. Gulisashvili and E. M. Stein. Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models. Applied Mathematics and Optimization, 61 (2010), 287-315.
    Paper not yet in RePEc: Add citation now
  7. A. Gulisashvili. Analytically Tractable Stochastic Stock Price Models. Springer-Verlag Berlin Heidelberg, 2012.
    Paper not yet in RePEc: Add citation now
  8. A. Jacquier, C. Martini, and A. Muguruza. On VIX futures in the rough Bergomi models. Available on arXiv:1701.04260v1, 2017.

  9. A. Jacquier, M. S. Pakkanen, H. Stone. Pathwise large deviations for the rough Bergomi model. Preprint, 2017.

  10. A. Lewis. Option Valuation under Stochastic Volatility: With Mathematica Code, Finance Pr, 2000

  11. A. M. Yaglom. Correlation Theory of Stationary and Related Random Functions, Vol. I, Springer-Verlag New York, 1987.
    Paper not yet in RePEc: Add citation now
  12. A. Millett and M. Sanz-Solé. Large deviations of rough paths of the fractional Brownian motion. Ann. I. H. Poincaré-PR, 42 (2006), 245-271.
    Paper not yet in RePEc: Add citation now
  13. A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Doklady Acad. USSR, 26 (1940), 115-118.
    Paper not yet in RePEc: Add citation now
  14. A. S Üstünel and M. Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 2000.
    Paper not yet in RePEc: Add citation now
  15. B. Jourdain. Loss of martingality in asset price models with lognormal stochastic volatility. Internat. J. Theoret. Appl. Finance, 13 (2004), 767-787.
    Paper not yet in RePEc: Add citation now
  16. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10 (1968), 422-437.
    Paper not yet in RePEc: Add citation now
  17. C. A. Sin. Complications with stochastic volatility models. Adv. Appl. Prob., 30 (1998), 256-268.
    Paper not yet in RePEc: Add citation now
  18. C. Bayer, P. Friz, A. Gulisashvili, B. Horvath, and B. Stemper. Short-time near-the-money skew in rough fractional volatility models, submitted for publication, available on arXiv:1703.05132v1, 2017.
    Paper not yet in RePEc: Add citation now
  19. C. Bayer, P. Friz, P. Gassiat, J. Martin, and B. Stemper. A regularity structure for rough volatility. In preparation, 2017.

  20. C. Bayer, P. K. Friz, and J. Gatheral. Pricing under rough volatility. Quantitative Finance, 16 (2016), 887-904.

  21. C. Doléans-Dade. On the existence and unicity of solutions of stochastic integral equations. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 36 (1976), 93-101.
    Paper not yet in RePEc: Add citation now
  22. D. Hobson. Comparison results for stochastic volatility models via coupling. Finance & Stochastics, 14 (2010), 129-152.

  23. D. Revuz and M. Yor. Continuous Matringales and Brownian Motion. Springer-Verlag Berlin Heidelberg, 1999.
    Paper not yet in RePEc: Add citation now
  24. E. Alòs, J. A. León, and J. Vives. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance and Stochastics, 11 (2007), 571-589.

  25. E. Bayraktar, C. Kardaras, and H. Xing. Valuation equations for stochastic volatility models. SIAM Journal on Financial Mathematics, 3 (2012), 351-373.

  26. E. Comte and E. Renault. Long memory in continuous-time stochastic volatility models, Mathematical Finance, 8 (1998), 291-323.

  27. E. Csáki and M. Csörgő. Inequalities for increments of stochastic processes and moduli of continuity. The Annals of Probability, 20 (1992), 1031-1052.
    Paper not yet in RePEc: Add citation now
  28. E. M. Stein and J. C. Stein. Stock price distributions with stochastic volatility: An analytic approach. The Review of Finantial Studies, 4 (1991), 727-752.

  29. F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing for unbounded stochastic processes. Mathematische Annalen, 312 (1998), 215-250.
    Paper not yet in RePEc: Add citation now
  30. G. Garnier and K. Solna. Option pricing under fast-varying and rough stochastic volatility. Pre-print, available on arXiv:1707.00610v1, 2017.
    Paper not yet in RePEc: Add citation now
  31. H. Hult. Approximationg some Volterra type stochastic integrals with application to parameter estimation. Stochastic Processes and their Applications, 105 (2001), 1-32.
    Paper not yet in RePEc: Add citation now
  32. J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough. Pre-print, available on arXiv:1410.3394, 2014.

  33. J.-D. Deuschel and D. W. Stroock. Large Deviations. Academic Press Boston, 1989.
    Paper not yet in RePEc: Add citation now
  34. J.-D. Deuschel, P. K. Friz, A. Jacquier, and S. Violante. Marginal density expansions for diffusions and stochastic volatility II: Applications. Communications on Pure and Applied Mathematics, 67 (2014), 321350.

  35. K. Gao and R. Lee. Asymptotics of implied volatility of arbitrary order. Finance and Stochastics, 18 (2014), 349-392.

  36. L. B. G. Andersen and V. V. Piterbarg. Moment explosions in stochastic volatility models. Finance and Stochastics, (2007), 29-50.

  37. L. Scott. Option pricing when the variance changes randomly: theory, estimation, and an application. Journal of Financial and Quantitative Analysis, 22 (1987), 419-438.

  38. M. Forde and H. Zhang. Asymptotics for rough stochastic volatility models. SIAM Journal on Financial Mathematics, 8 (2017), 114-145.
    Paper not yet in RePEc: Add citation now
  39. M. Fukasawa. Short-time at-the-money skew and rough fractional volatility. Quantitative Finance, 17 (2017), 189-198.

  40. M. Lifshits. Gaussian Random Functions. Cluver Academic Publishers Dordrecht Boston London, 1995. 2012.
    Paper not yet in RePEc: Add citation now
  41. M. Lifshits. Lectures on Gaussian Processes. Springer Verlag, 2012.
    Paper not yet in RePEc: Add citation now
  42. P. Baldi, G. Ben Arous, and G. Kerkyacharian. Large deviations and the Strassen theorem in Hölder spaces. Stochastic Processes and their Applications, 42 (1992), 171-180.

  43. P. Cheridito, H. Kawaguchi, M. Maejima. Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab., 8 (2003), 1-14.
    Paper not yet in RePEc: Add citation now
  44. P. Lévy. Wiener’s random functions, and other Laplacian random functions. Proc. Sec. Berkeley Symp. Math. Statist. Probab., Vol II, University of California Press, Berkeley, CA, 1950, pp. 171-186.
    Paper not yet in RePEc: Add citation now
  45. P.-L. Lions and M. Musiela. Correlations and bounds for stochastic volatility models. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 24 (2007), 1-16.
    Paper not yet in RePEc: Add citation now
  46. R. Vilela Mendez and M. J. Oliveira. A data-reconstructed fractional volatility model. available on arXiv:math/0602013v2, 2007.

  47. T. Kaarakka and P. Salminen. On fractional Ornstein-Uhlenbeck processes. Communications on Stochastic Analysis, 5 (2011), 121-133.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A general option pricing framework for affine fractionally integrated models. (2025). Badescu, Alexandru ; Augustyniak, Maciej ; Jayaraman, Sarath Kumar ; Bgin, Jean-Franois.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:171:y:2025:i:c:s0378426624002607.

    Full description at Econpapers || Download paper

  2. Estimation of bid-ask spreads in the presence of serial dependence. (2025). Brouty, Xavier ; Garcin, Matthieu ; Roccaro, Hugo.
    In: Papers.
    RePEc:arx:papers:2407.17401.

    Full description at Econpapers || Download paper

  3. A New Proxy for Estimating the Roughness of Volatility. (2024). Zhao, QI ; Chronopoulou, Alexandra.
    In: JRFM.
    RePEc:gam:jjrfmx:v:17:y:2024:i:4:p:131-:d:1361912.

    Full description at Econpapers || Download paper

  4. Fractal properties, information theory, and market efficiency. (2024). Brouty, Xavier ; Garcin, Matthieu.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000948.

    Full description at Econpapers || Download paper

  5. Sandwiched Volterra Volatility model: Markovian approximations and hedging. (2024). di Nunno, Giulia ; Yurchenko-Tytarenko, Anton.
    In: Papers.
    RePEc:arx:papers:2209.13054.

    Full description at Econpapers || Download paper

  6. Option pricing in Sandwiched Volterra Volatility model. (2024). Mishura, Yuliya ; di Nunno, Giulia ; Yurchenko-Tytarenko, Anton.
    In: Papers.
    RePEc:arx:papers:2209.10688.

    Full description at Econpapers || Download paper

  7. An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process. (2023). Zhou, Jingying ; Jiang, Hui.
    In: Journal of Theoretical Probability.
    RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01194-w.

    Full description at Econpapers || Download paper

  8. Least squares estimations for approximate fractional Vasicek model driven by a semimartingale. (2023). Xiao, Xiaofang ; Wang, Jixia ; Li, Chao.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:208:y:2023:i:c:p:207-218.

    Full description at Econpapers || Download paper

  9. From constant to rough: A survey of continuous volatility modeling. (2023). Mishura, Yuliya ; Kubilius, Kkestutis ; di Nunno, Giulia ; Yurchenko-Tytarenko, Anton.
    In: Papers.
    RePEc:arx:papers:2309.01033.

    Full description at Econpapers || Download paper

  10. Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process. (2022). frezza, massimiliano ; Bianchi, Sergio ; Pianese, Augusto.
    In: Computational Management Science.
    RePEc:spr:comgts:v:19:y:2022:i:1:d:10.1007_s10287-021-00412-w.

    Full description at Econpapers || Download paper

  11. Estimation of the Hurst Parameter in Spot Volatility. (2022). Teng, Yuanyang ; Li, Yicun.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:10:p:1619-:d:812176.

    Full description at Econpapers || Download paper

  12. Large and moderate deviations for stochastic Volterra systems. (2022). Jacquier, Antoine ; Pannier, Alexandre.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:149:y:2022:i:c:p:142-187.

    Full description at Econpapers || Download paper

  13. Fractional Liu uncertain differential equation and its application to finance. (2022). Taleghani, Rahman ; Najafi, Alireza.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010542.

    Full description at Econpapers || Download paper

  14. Large and moderate deviations for stochastic Volterra systems. (2022). Jacquier, Antoine ; Pannier, Alexandre.
    In: Papers.
    RePEc:arx:papers:2004.10571.

    Full description at Econpapers || Download paper

  15. Forecasting with fractional Brownian motion: a financial perspective. (2021). Garcin, Matthieu.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03230167.

    Full description at Econpapers || Download paper

  16. The closed-form option pricing formulas under the sub-fractional Poisson volatility models. (2021). Yang, Zijian ; Wang, Xiaotian ; Cao, Piyao.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003660.

    Full description at Econpapers || Download paper

  17. Forecasting with fractional Brownian motion: a financial perspective. (2021). Garcin, Matthieu.
    In: Papers.
    RePEc:arx:papers:2105.09140.

    Full description at Econpapers || Download paper

  18. Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices. (2020). Shi, Yanlin ; Ho, Kin-Yip ; Gao, Guangyuan.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:61:y:2020:i:c:s0927538x18300441.

    Full description at Econpapers || Download paper

  19. HURST EXPONENTS AND DELAMPERTIZED FRACTIONAL BROWNIAN MOTIONS. (2019). Garcin, Matthieu.
    In: International Journal of Theoretical and Applied Finance (IJTAF).
    RePEc:wsi:ijtafx:v:22:y:2019:i:05:n:s0219024919500249.

    Full description at Econpapers || Download paper

  20. Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth. (2019). Mishura, Yuliya ; Bezborodov, Viktor ; Persio, Luca.
    In: Methodology and Computing in Applied Probability.
    RePEc:spr:metcap:v:21:y:2019:i:1:d:10.1007_s11009-018-9650-3.

    Full description at Econpapers || Download paper

  21. Fractal analysis of the multifractality of foreign exchange rates. (2019). Garcin, Matthieu.
    In: Working Papers.
    RePEc:hal:wpaper:hal-02283915.

    Full description at Econpapers || Download paper

  22. Statistical inference for Vasicek-type model driven by Hermite processes. (2019). Diu, T T ; Nourdin, Ivan.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:129:y:2019:i:10:p:3774-3791.

    Full description at Econpapers || Download paper

  23. Asymptotic theory for rough fractional Vasicek models. (2019). Yu, Jun ; Xiao, Weilin.
    In: Economics Letters.
    RePEc:eee:ecolet:v:177:y:2019:i:c:p:26-29.

    Full description at Econpapers || Download paper

  24. Asymptotic Theory for Rough Fractional Vasicek Models. (2018). Yu, Jun ; Xiao, Weilin.
    In: Economics and Statistics Working Papers.
    RePEc:ris:smuesw:2018_007.

    Full description at Econpapers || Download paper

  25. Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function. (2018). Mehrdoust, Farshid ; Najafi, Alireza.
    In: Computational Economics.
    RePEc:kap:compec:v:52:y:2018:i:2:d:10.1007_s10614-017-9715-3.

    Full description at Econpapers || Download paper

  26. Option pricing under fast-varying and rough stochastic volatility. (2018). Solna, Knut ; Garnier, Josselin.
    In: Annals of Finance.
    RePEc:kap:annfin:v:14:y:2018:i:4:d:10.1007_s10436-018-0325-4.

    Full description at Econpapers || Download paper

  27. Hurst exponents and delampertized fractional Brownian motions. (2018). Garcin, Matthieu.
    In: Working Papers.
    RePEc:hal:wpaper:hal-01919754.

    Full description at Econpapers || Download paper

  28. On a class of estimation and test for long memory. (2018). He, Xin-Jiang ; Chen, Wenting ; Fu, Hui.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:509:y:2018:i:c:p:906-920.

    Full description at Econpapers || Download paper

  29. Large deviation principle for Volterra type fractional stochastic volatility models. (2018). Gulisashvili, Archil.
    In: Papers.
    RePEc:arx:papers:1710.10711.

    Full description at Econpapers || Download paper

  30. Correction to Black-Scholes formula due to fractional stochastic volatility. (2017). Solna, Knut ; Garnier, Josselin.
    In: Papers.
    RePEc:arx:papers:1509.01175.

    Full description at Econpapers || Download paper

  31. Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties. (2015). Ryvkina, Jelena.
    In: Journal of Theoretical Probability.
    RePEc:spr:jotpro:v:28:y:2015:i:3:d:10.1007_s10959-013-0502-3.

    Full description at Econpapers || Download paper

  32. Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model. (2015). Shi, Yanlin ; Ho, Kin-Yip.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s189-s204.

    Full description at Econpapers || Download paper

  33. Modeling high-frequency volatility with three-state FIGARCH models. (2015). Shi, Yanlin ; Ho, Kin-Yip.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:51:y:2015:i:c:p:473-483.

    Full description at Econpapers || Download paper

  34. Volatility is rough. (2014). Jaisson, Thibault ; Rosenbaum, Mathieu ; Gatheral, Jim.
    In: Papers.
    RePEc:arx:papers:1410.3394.

    Full description at Econpapers || Download paper

  35. How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches. (2013). Zhang, Zhaoyong ; Shi, Yanlin ; Ho, Kin-Yip.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:26:y:2013:i:c:p:436-456.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-02 00:45:32 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.