- — (1965). On the asymptotic behavior of Bayes estimates in the discrete case II. The Annals of Mathematical Statistics, 36 (2), 454–456.
Paper not yet in RePEc: Add citation now
- — and — (2002). Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information. Journal of Computational and Graphical Statistics, 11 (3), 508–532.
Paper not yet in RePEc: Add citation now
- — and — (2014). Posterior consistency in conditional density estimation by covariate dependent mixtures. Econometric Theory, 30, 606–646.
Paper not yet in RePEc: Add citation now
- — and — (2017b). Unobserved heterogeneity in income dynamics: An empirical bayes perspective. Journal of Business & Economic Statistics, 35 (1), 1–16.
Paper not yet in RePEc: Add citation now
— and Bonhomme, S. (2012). Identifying distributional characteristics in random coefficients panel data models. The Review of Economic Studies, 79 (3), 987–1020.
— and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68 (1), 29 – 51.
- — and Carlin, B. P. (1999). On MCMC sampling in hierarchical longitudinal models. Statistics and Computing, 9 (1), 17–26.
Paper not yet in RePEc: Add citation now
— and Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests. Journal of Business & Economic Statistics, 25 (2), 177–190.
— and HonoreÃŒÂ, B. (2001). Panel data models: some recent developments. Handbook of econometrics, 5, 3229–3296.
— and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13 (3).
— and Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika, 95 (2), 307–323.
— and Pati, D. (2017). Adaptive Bayesian estimation of conditional densities. Econometric Theory, 33 (4), 980–1012.
— and Pelenis, J. (2012). Bayesian modeling of joint and conditional distributions. Journal of Econometrics, 168 (2), 332–346.
- — and Seamans, R. (2014). The role of R&D in entrepreneurial finance and performance. Available at SSRN 2341631.
Paper not yet in RePEc: Add citation now
- — and van der Vaart, A. (2007). Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist., 35 (2), 697–723.
Paper not yet in RePEc: Add citation now
— and White, H. (2012). Some extensions of a lemma of Kotlarski. Econometric Theory, 28 (4), 925–932.
Akcigit, U. and Kerr, W. R. (2016). Growth through heterogeneous innovations. Journal of Political Economy, forthcoming.
- Amewou-Atisso, M., Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (2003). Posterior consistency for semi-parametric regression problems. Bernoulli, 9 (2), 291–312.
Paper not yet in RePEc: Add citation now
Amisano, G. and Geweke, J. (2017). Prediction using several macroeconomic models. The Review of Economics and Statistics, 99 (5), 912–925.
- Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, pp. 1152–1174.
Paper not yet in RePEc: Add citation now
Arellano, M. (2003). Panel Data Econometrics. Oxford University Press.
- AtchadeÃŒÂ, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli, 11 (5), 815–828.
Paper not yet in RePEc: Add citation now
- Baltagi, B. (1995). Econometric Analysis of Panel Data. John Wiley & Sons, New York.
Paper not yet in RePEc: Add citation now
- Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist., 27 (2), 536–561.
Paper not yet in RePEc: Add citation now
Basu, S. and Chib, S. (2003). Marginal likelihood and Bayes factors for Dirichlet process mixture models. Journal of the American Statistical Association, 98 (461), 224–235.
- Blackwell, D. and Dubins, L. (1962). Merging of opinions with increasing information. The Annals of Mathematical Statistics, 33 (3), 882–886.
Paper not yet in RePEc: Add citation now
Burda, M. and Harding, M. (2013). Panel probit with flexible correlated effects: quantifying technology spillovers in the presence of latent heterogeneity. Journal of Applied Econometrics, 28 (6), 956–981.
- Canale, A. and De Blasi, P. (2017). Posterior asymptotics of nonparametric location-scale mixtures for multivariate density estimation. Bernoulli, 23 (1), 379–404.
Paper not yet in RePEc: Add citation now
Canova, F. and Ciccarelli, M. (2013). Panel Vector Autoregressive Models: A Survey. Working Paper Series, European Central Bank 1507, European Central Bank.
Chamberlain, G. and Hirano, K. (1999). Predictive distributions based on longitudinal earnings data. Annales d’Economie et de Statistique, pp. 211–242.
- Chib, S. (2008). Panel data modeling and inference: a Bayesian primer. In The econometrics of panel data, Springer, pp. 479–515.
Paper not yet in RePEc: Add citation now
- Chung, Y. and Dunson, D. B. (2012). Nonparametric Bayes conditional distribution modeling with variable selection. Journal of the American Statistical Association.
Paper not yet in RePEc: Add citation now
Compiani, G. and Kitamura, Y. (2016). Using mixtures in econometric models: a brief review and some new results. The Econometrics Journal, 19 (3), C95–C127.
- Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. The Annals of Statistics, pp. 665–685.
Paper not yet in RePEc: Add citation now
- Diaconis, P. and Freedman, D. (1986). On inconsistent Bayes estimates of location. The Annals of Statistics, pp. 68–87.
Paper not yet in RePEc: Add citation now
Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk management. International Economic Review, 39 (4), 863–883.
- Doob, J. L. (1949). Application of the theory of martingales. Le calcul des probabilites et ses applications, pp. 23–27.
Paper not yet in RePEc: Add citation now
Dunson, D. B. (2009). Nonparametric Bayes local partition models for random effects. Biometrika, 96 (2), 249–262.
- Efron, B. (2012). Large-scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction, vol. 1. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90 (430), 577–588.
Paper not yet in RePEc: Add citation now
- Evdokimov, K. (2010). Identification and estimation of a nonparametric panel data model with unobserved heterogeneity.
Paper not yet in RePEc: Add citation now
- Freedman, D. A. (1963). On the asymptotic behavior of Bayes’ estimates in the discrete case.
Paper not yet in RePEc: Add citation now
- Galambos, J. and Simonelli, I. (2004). Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions. Marcel Dekker.
Paper not yet in RePEc: Add citation now
Geweke, J. and Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of Forecasting, 26 (2), 216–230.
- Ghosal, S., Ghosh, J. K., Ramamoorthi, R. et al. (1999). Posterior consistency of Dirichlet mixtures in density estimation. The Annals of Statistics, 27 (1), 143–158.
Paper not yet in RePEc: Add citation now
- Ghosh, J. K. and Ramamoorthi, R. (2003). Bayesian Nonparametrics. Springer-Verlag.
Paper not yet in RePEc: Add citation now
- Griffin, J. E. (2016). An adaptive truncation method for inference in Bayesian nonparametric models. Statistics and Computing, 26 (1), 423–441.
Paper not yet in RePEc: Add citation now
Gu, J. and Koenker, R. (2017a). Empirical bayesball remixed: Empirical bayes methods for longitudinal data. Journal of Applied Econometrics, 32 (3), 575–599.
Haltiwanger, J., Jarmin, R. S. and Miranda, J. (2012). Who creates jobs? Small versus large versus young. Review of Economics and Statistics, 95 (2), 347–361.
- Hastie, D. I., Liverani, S. and Richardson, S. (2015). Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations.
Paper not yet in RePEc: Add citation now
Hirano, K. (2002). Semiparametric Bayesian inference in autoregressive panel data models. Econometrica, 70 (2), 781–799.
- Hjort, N. L., Holmes, C., Müller, P. and Walker, S. G. (2010). Bayesian Nonparametrics. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Hsiao, C. (2014). Analysis of panel data. Cambridge university press.
Paper not yet in RePEc: Add citation now
Hu, Y. (2017). The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics. Journal of Econometrics, 200 (2), 154–168.
Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96 (453), 161–173.
- James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, Calif.: University of California Press, pp. 361–379.
Paper not yet in RePEc: Add citation now
- Jensen, M. J., Fisher, M. and Tkac, P. (2015). Mutual fund performance when learning the distribution of stock-picking skill.
Paper not yet in RePEc: Add citation now
- Kalli, M., Griffin, J. E. and Walker, S. G. (2011). Slice sampling mixture models. Statistics and Computing, 21 (1), 93–105.
Paper not yet in RePEc: Add citation now
Lancaster, T. (2002). Orthogonal parameters and panel data. The Review of Economic Studies, 69 (3), 647–666.
Lee, Y., Amaral, L. A. N., Canning, D., Meyer, M. and Stanley, H. E. (1998). Universal features in the growth dynamics of complex organizations. Physical Review Letters, 81 (15), 3275.
Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. Journal of Multivariate Analysis, 65 (2), 139 – 165.
Liu, L., Moon, H. R. and Schorfheide, F. (2017). Forecasting with dynamic panel data models.
Liverani, S., Hastie, D. I., Azizi, L., Papathomas, M. and Richardson, S. (2015). PReMiuM: an R package for profile regression mixture models using Dirichlet processes. Journal of Statistical Software, 64 (7).
- Llera, A. and Beckmann, C. (2016). Estimating an Inverse Gamma distribution. arXiv preprint arXiv:1605.01019.
Paper not yet in RePEc: Add citation now
Marcellino, M., Stock, J. H. and Watson, M. W. (2006). A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics, 135 (1), 499–526.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9 (2), 249–265.
Paper not yet in RePEc: Add citation now
- Norets, A. (2010). Approximation of conditional densities by smooth mixtures of regressions. The Annals of Statistics, 38 (3), 1733–1766.
Paper not yet in RePEc: Add citation now
Papaspiliopoulos, O. and Roberts, G. O. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95 (1), 169–186.
Pati, D., Dunson, D. B. and Tokdar, S. T. (2013). Posterior consistency in conditional distribution estimation. Journal of Multivariate Analysis, 116, 456–472.
- Pav, S. E. (2015). Moments of the log non-central chi-square distribution. arXiv preprint arXiv:1503.06266.
Paper not yet in RePEc: Add citation now
Pelenis, J. (2014). Bayesian regression with heteroscedastic error density and parametric mean function. Journal of Econometrics, 178, 624–638.
Robb, A., Ballou, J., DesRoches, D., Potter, F., Zhao, Z. and Reedy, E. (2009). An overview of the Kauffman Firm Survey: results from the 2004-2007 data. Available at SSRN 1392292.
- Robbins, H. (1956). An empirical Bayes approach to statistics. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles.
Paper not yet in RePEc: Add citation now
Rossi, P. E. (2014). Bayesian Non- and Semi-parametric Methods and Applications. Princeton University Press.
Santarelli, E., Klomp, L. and Thurik, A. R. (2006). Gibrat’s law: an overview of the empirical literature. In Entrepreneurship, Growth, and Innovation, Springer, pp. 41–73.
- Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, pp. 639–650.
Paper not yet in RePEc: Add citation now
- Shin, M. (2014). Bayesian GMM.
Paper not yet in RePEc: Add citation now
- Tokdar, S. T. (2006). Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhyā: The Indian Journal of Statistics, pp. 90–110.
Paper not yet in RePEc: Add citation now
- Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics - Simulation and Computation, 36 (1), 45–54.
Paper not yet in RePEc: Add citation now
Yau, C., Papaspiliopoulos, O., Roberts, G. O. and Holmes, C. (2011). Bayesian nonparametric hidden Markov models with applications in genomics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (1), 37–57.