create a website

Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators. (2019). Gabbouj, Moncef ; Kanniainen, Juho ; Iosifidis, Alexandros ; Ntakaris, Adamantios.
In: Papers.
RePEc:arx:papers:1907.09452.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 98

References cited by this document

Cocites: 29

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Aspray, T. (1989). Individual stocks and macd. Technical Analysis of Stocks & Commodities, 7(2):56–61.
    Paper not yet in RePEc: Add citation now
  2. Baetje, F. & Menkhoff, L. (2016). Equity premium prediction: Are economic and technical indicators unstable? International Journal of Forecasting, 32(4):1193–1207.

  3. Bank, P. & Baum, D. (2004). Hedging and portfolio optimization in financial markets with a large trader. Mathematical Finance, 14(1):1–18. Available from: http://dx.doi.org/10.1111/j. 0960-1627.2004.00179.x.

  4. Batchelor, R. & Kwan, T. Y. (2007). Judgemental bootstrapping of technical traders in the bond market. International Journal of Forecasting, 23(3):427–445.

  5. Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. Trans. Neur. Netw., 5(4):537–550. Available from: http://dx.doi.org/10.1109/72.298224.
    Paper not yet in RePEc: Add citation now
  6. Blau, W. (1991). Double smoothed-stochastics. Technical Analysis of Stocks and Commodities, 9.
    Paper not yet in RePEc: Add citation now
  7. Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3):542–547. Available from: http: //www.jstor.org/stable/1925546.

  8. Bollinger, J. (2001). Bollinger on Bollinger bands. McGraw Hill Professional.
    Paper not yet in RePEc: Add citation now
  9. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  10. Brasileiro, R. C., Souza, V. L. F., Fernandes, B. J. T., & Oliveira, A. L. I. (2013). Automatic method for stock trading combining technical analysis and the artificial bee colony algorithm. In IEEE Congress on Evolutionary Computation, pages 1810–1817.
    Paper not yet in RePEc: Add citation now
  11. Broomhead, D. S. & Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom).
    Paper not yet in RePEc: Add citation now
  12. Chan, L. K. C., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: Forecasting covariances and choosing the risk model. The Review of Financial Studies, 12(5):937–974. Available from: +http://dx.doi.org/10.1093/rfs/12.5.937.

  13. Chande, T. S. (1992). Adapting moving averages to market volatility. Stock & Commodities, 10:3.
    Paper not yet in RePEc: Add citation now
  14. Chande, T. S. & Kroll, S. (1994). The new technical trader. New York.
    Paper not yet in RePEc: Add citation now
  15. Chandrashekar, G. & Sahin, F. (2014). A survey on feature selection methods. Comput. Electr. Eng., 40(1):16–28. Available from: http://dx.doi.org/10.1016/j.compeleceng.2013.11.024.
    Paper not yet in RePEc: Add citation now
  16. Chen, C.-H. (2011). Feature selectionfor unlabeled data. In Tan, Y., Shi, Y., Chai, Y., & Wang, G., editors, Advances in Swarm Intelligence, pages 269–274, Berlin, Heidelberg. Springer Berlin Heidelberg.
    Paper not yet in RePEc: Add citation now
  17. Chua, S. (2006). Sammy Chua’s Day Trade Your Way to Financial Freedom. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  18. Dash, R. & Dash, P. K. (2016). A hybrid stock trading framework integrating technical analysis with machine learning techniques. The Journal of Finance and Data Science, 2(1):42 – 57. Available from: http://www.sciencedirect.com/science/article/pii/S2405918815300179.
    Paper not yet in RePEc: Add citation now
  19. de Oliveira, F. A., Nobre, C. N., & Zrate, L. E. (2013). Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index case study of petr4, petrobras, brazil. Expert Systems with Applications, 40(18):7596 – 7606. Available from: http: //www.sciencedirect.com/science/article/pii/S0957417413004703.
    Paper not yet in RePEc: Add citation now
  20. Dempster, M. A. H., Payne, T. W., Romahi, Y., & Thompson, G. W. P. (2001). Computational learning techniques for intraday fx trading using popular technical indicators. IEEE Transactions on Neural Networks, 12(4):744–754.
    Paper not yet in RePEc: Add citation now
  21. Diebold, F. X., Hahn, J., & Tay, A. S. (1999). Multivariate density forecast evaluation and calibration in financial risk management: High-frequency returns on foreign exchange. The Review of Economics and Statistics, 81(4):661–673. Available from: https://doi.org/10.1162/ 003465399558526.

  22. Dixon, M. (2018). Sequence classification of the limit order book using recurrent neural networks. Journal of computational science, 24:277–286.
    Paper not yet in RePEc: Add citation now
  23. Dolde, W. (1993). The trajectory of corporate financial risk management. Journal of Applied Corporate Finance, 6(3):33–41. Available from: http://dx.doi.org/10.1111/j.1745-6622.1993. tb00232.x.

  24. Ehlers, J. F. (2001). Rocket science for traders: digital signal processing applications, volume 112, 2001. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  25. Elder, A. (2002). Come into my trading room: A complete guide to trading, volume 163, 2002. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  26. Engle, R. F. & Granger, C. W. (1987a). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, pages 251–276.
    Paper not yet in RePEc: Add citation now
  27. Engle, R. F. & Granger, C. W. J. (1987b). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2):251–276. Available from: http://www.jstor.org/ stable/1913236.

  28. Eshel, G. (2003). The yule walker equations for the ar coefficients. Internet resource, 2:68–73.
    Paper not yet in RePEc: Add citation now
  29. Fama, E. F. (1968). Risk, return and equilibrium: some clarifying comments. The Journal of Finance, 23(1):29–40.

  30. Fang, Y. & Xu, D. (2003). The predictability of asset returns: an approach combining technical analysis and time series forecasts. International Journal of Forecasting, 19(3):369–385.

  31. French, C. W. (2003). The treynor capital asset pricing model. Journal of Investment Management, 1(2):60–72.
    Paper not yet in RePEc: Add citation now
  32. Gabrielsson, P., Johansson, U., & Konig, R. (2014). Co-evolving online high-frequency trading strategies using grammatical evolution. In IEEE Conference on Computational Intelligence for Financial Engineering Economics, pages 473–480.
    Paper not yet in RePEc: Add citation now
  33. Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison, S. D. (2013). Limit order books. Quantitative Finance, 13(11):1709–1742.

  34. Gregory-Williams, J. & Williams, B. M. (2012). Trading chaos: maximize profits with proven technical techniques, volume 172, 2012. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  35. Hamilton, J. D. (1994). Time series analysis, volume 2, 1994. Princeton university press Princeton.
    Paper not yet in RePEc: Add citation now
  36. Hampton, J. J. (1982). Modern Financial Theory: Perfect and Imperfect Markets. Reston Publishing Company.
    Paper not yet in RePEc: Add citation now
  37. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3):489–501.
    Paper not yet in RePEc: Add citation now
  38. Inuiguchi, M. & Tanino, T. (2000). Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems, 115(1):83 – 92. Available from: http://www.sciencedirect.com/science/ article/pii/S0165011499000263.
    Paper not yet in RePEc: Add citation now
  39. Iosifidis, A., Tefas, A., & Pitas, I. (2012). Multidimensional sequence classification based on fuzzy distances and discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 25(11):2564–2575.
    Paper not yet in RePEc: Add citation now
  40. Iosifidis, A., Tefas, A., & Pitas, I. (2015). On the kernel extreme learning machine classifier. Pattern Recognition Letters, 54:11–17.
    Paper not yet in RePEc: Add citation now
  41. Iosifidis, A., Tefas, A., & Pitas, I. (2017). Approximate kernel extreme learning machine for large scale data classification. Neurocomputing, 219:210–220.
    Paper not yet in RePEc: Add citation now
  42. Jensen, M. C., Black, F., & Scholes, M. S. (1972). The capital asset pricing model: Some empirical tests. Available from: https://ssrn.com/abstract=908569.
    Paper not yet in RePEc: Add citation now
  43. Kablan, A. (2009). Adaptive neuro-fuzzy inference system for financial trading using intraday seasonality observation model. World Academy of Science, Engineering and Technology, 58:479–488.
    Paper not yet in RePEc: Add citation now
  44. Kablan, A. & Ng, W. (2010). High frequency trading using fuzzy momentum analysis. In Proceedings of the World Congress on Engineering, volume 1.
    Paper not yet in RePEc: Add citation now
  45. Keltner, C. W. (1960). How to make money in commodities. Keltner Statistical Service.
    Paper not yet in RePEc: Add citation now
  46. Kercheval, A. N. & Zhang, Y. (2015). Modelling high-frequency limit order book dynamics with support vector machines. Quantitative Finance, 15(8):1315–1329. Available from: http://dx.doi. org/10.1080/14697688.2015.1032546.

  47. Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock market prices using random forest. CoRR, abs/1605.00003. Available from: http://arxiv.org/abs/1605.00003.
    Paper not yet in RePEc: Add citation now
  48. Kohavi, R. & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1):273 – 324. Available from: http://www.sciencedirect.com/science/article/pii/ S000437029700043X.
    Paper not yet in RePEc: Add citation now
  49. Kumaresan, R. (1990). Identification of rational transfer function from frequency response sample. IEEE Transactions on Aerospace and Electronic Systems, 26(6):925–934.
    Paper not yet in RePEc: Add citation now
  50. Kwon, Y. K. & Moon, B. R. (2007). A hybrid neurogenetic approach for stock forecasting. IEEE Transactions on Neural Networks, 18(3):851–864.
    Paper not yet in RePEc: Add citation now
  51. Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The review of economics and statistics, pages 13–37.
    Paper not yet in RePEc: Add citation now
  52. Liu, H., Sun, J., Liu, L., & Zhang, H. (2009). Feature selection with dynamic mutual information. Pattern Recognition, 42(7):1330 – 1339. Available from: http://www.sciencedirect.com/science/ article/pii/S0031320308004615.
    Paper not yet in RePEc: Add citation now
  53. Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The Journal of Finance, 55(4):1705– 1765. Available from: http:https://doi.org/10.1111/0022-1082.00265.

  54. Lubnau, T. & Todorova, N. (2015). Trading on mean-reversion in energy futures markets. Energy Economics, 51(Supplement C):312 – 319. Available from: http://www.sciencedirect.com/ science/article/pii/S014098831500208X.

  55. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91. Available from: http://www.jstor.org/stable/2975974.
    Paper not yet in RePEc: Add citation now
  56. Markowitz, H. M. (1968). Portfolio selection: efficient diversification of investments, volume 16. Yale university press.
    Paper not yet in RePEc: Add citation now
  57. Miao, J. & Niu, L. (2016). A survey on feature selection. In 4th International Conference on Information Technology and Quantitative Management, pages 919 – 926, 2016.
    Paper not yet in RePEc: Add citation now
  58. Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the econometric society, pages 768–783.
    Paper not yet in RePEc: Add citation now
  59. Mulloy, P. G. (1994). Smoothing data with faster moving averages. Stocks & Commodities, 12(1):11– 19.
    Paper not yet in RePEc: Add citation now
  60. Muranaka, K. (2000). Ichimoku charts. TECHNICAL ANALYSIS OF STOCKS AND COMMODITIES-MAGAZINE EDITION-, 18(10):22–31.
    Paper not yet in RePEc: Add citation now
  61. Murphy, J. (1999). Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. New York Institute of Finance Series. New York Institute of Finance. Available from: https://books.google.fi/books?id=5zhXEqdr_IcC.
    Paper not yet in RePEc: Add citation now
  62. Naiman, E. (2009). Small encyclopedia of trader. Moscow: Alpina Business Books, 456.
    Paper not yet in RePEc: Add citation now
  63. Ng, A. (2000). Cs229 lecture notes. CS229 Lecture notes, 1(1):1–3.
    Paper not yet in RePEc: Add citation now
  64. Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Benchmark dataset for mid-price prediction of limit order book data. CoRR, abs/1705.03233. Available from: http: //arxiv.org/abs/1705.03233.
    Paper not yet in RePEc: Add citation now
  65. Ntakaris, A., Mirone, G., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2019). Feature engineering for mid-price prediction forecasting with deep learning. arXiv preprint arXiv:1904.05384.

  66. Oriani, F. B. & Coelho, G. P. (2013). Evaluating the impact of technical indicators on stock forecasting. In IEEE Symposium Series on Computational Intelligence, pages 1–8, 2016.
    Paper not yet in RePEc: Add citation now
  67. Pagonidis, A. S. (2014). The ibs effect: Mean reversion in equity etfs. Accessed on 201703 -17. Available from: http://www.naaim.org/wp-content/uploads/2014/04/00V_Alexander_ Pagonidis_The-IBS-Effect-Mean-Reversion-in-Equity-ETFs-1.pdf.
    Paper not yet in RePEc: Add citation now
  68. Passalis, N., Tsantekidis, A., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Timeseries classification using neural bag-of-features. In IEEE 25th European Conference of Signal Processing, pages 301–305, 2017.
    Paper not yet in RePEc: Add citation now
  69. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1):259 – 268. Available from: http://www.sciencedirect.com/science/ article/pii/S0957417414004473.
    Paper not yet in RePEc: Add citation now
  70. Perold, A. F. (1984). Large-scale portfolio optimization. Management Science, 30(10):1143–1160. Available from: https://doi.org/10.1287/mnsc.30.10.1143.

  71. Poterba, J. M. & Summers, L. H. (1988). Mean reversion in stock prices: Evidence and implications. Journal of financial economics, 22(1):27–59.

  72. Rayome, D. L., Jain, A., & Konku, D. (2007). Technical analysis: Donchian channels and the british pound. In IABE-Annual Conference, pages 302, 2007.
    Paper not yet in RePEc: Add citation now
  73. Richman, J. S. & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6):H2039–H2049.
    Paper not yet in RePEc: Add citation now
  74. Rodriguez-Gonzalez, A., Garca-Crespo, A., Colomo-Palacios, R., Iglesias, F. G., & Gomez-Berbs, J. M. (2011). Cast: Using neural networks to improve trading systems based on technical analysis by means of the rsi financial indicator. Expert Systems with Applications, 38(9):11489 – 11500. Available from: http://www.sciencedirect.com/science/article/pii/S0957417411004313.
    Paper not yet in RePEc: Add citation now
  75. Ross, S. A. (1977). The capital asset pricing model (capm), short-sale restrictions and related issues. The Journal of Finance, 32(1):177–183.

  76. Savitzky, A. & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.
    Paper not yet in RePEc: Add citation now
  77. Schafer, R. W. (2011). What is a savitzky-golay filter? [lecture notes]. IEEE Signal Processing Magazine, 28(4):111–117.
    Paper not yet in RePEc: Add citation now
  78. Scholtus, M. & van Dijk, D. (2012). High-frequency technical trading: The importance of speed. Available from: http://hdl.handle.net/1765/31778.

  79. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3):425–442.

  80. Shen, S., Jiang, H., & Zhang, T. (2012). Stock market forecasting using machine learning algorithms. Department of Electrical Engineering, Stanford University, Stanford, CA, pages 1–5.
    Paper not yet in RePEc: Add citation now
  81. Sirignano, J. (2016). Deep learning for limit order books. Available from: https://arxiv.org/ abs/1601.01987.

  82. Smith, C. W., Smithson, C. W., & Wilford, D. S. (1989). Managing financial risk. Journal of Applied Corporate Finance, 1(4):27–48. Available from: http://dx.doi.org/10.1111/j.1745-6622.1989. tb00172.x.

  83. Smith, S. W. (1999). The scientist and engineer’s guide to digital signal processing. California Technical Pub.
    Paper not yet in RePEc: Add citation now
  84. Song, F., Mei, D., & Li, H. (2010). Feature selection based on linear discriminant analysis. In IEEE Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application - vol 01, pages 746–749. Available from: http://dx.doi.org/10.1109/ISDEA.2010.311.
    Paper not yet in RePEc: Add citation now
  85. Taylor, S. J. (2008). Modelling financial time series. world scientific.
    Paper not yet in RePEc: Add citation now
  86. Teixeira, L. A. & de Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Systems with Applications, 37(10):6885 – 6890. Available from: http://www.sciencedirect.com/science/article/pii/ S0957417410002149.
    Paper not yet in RePEc: Add citation now
  87. Thanh, D. T., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Tensor representation in highfrequency financial data for price change prediction. arXiv:1709.01268.

  88. Tillson, T. (1998). Better moving averages. Available from: http://www.technicalindicators. net/indicators-technical-analysis/150-t3-movingaverage,[ziureta20160218].
    Paper not yet in RePEc: Add citation now
  89. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017a). Forecasting stock prices from the limit order book using convolutional neural networks. In IEEE 19th Conference on Business Informatics, volume 1, pages 7–12, 2017.
    Paper not yet in RePEc: Add citation now
  90. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017b). Using deep learning to detect price change indications in financial markets. In IEEE 25th European Conference of Signal Processing, pages 2511–2515, 2017.
    Paper not yet in RePEc: Add citation now
  91. Valcu, D. (2004). Using the heikin-ashi technique. TECHNICAL ANALYSIS OF STOCKS AND COMMODITIES-MAGAZINE EDITION-, 22(2):16–29.
    Paper not yet in RePEc: Add citation now
  92. Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock decision support system based on box theory and svm algorithm. Expert Systems with Applications, 37(2):1015 – 1022. Available from: http://www.sciencedirect.com/science/article/pii/S0957417409005107.
    Paper not yet in RePEc: Add citation now
  93. Wilder Jr, J. W. (1986). The relative strength index ? J. of Technical Analysis of Stocks and Commodities, 4:343–346.
    Paper not yet in RePEc: Add citation now
  94. Wilder, J. W. (1978). New concepts in technical trading systems. Trend Research.
    Paper not yet in RePEc: Add citation now
  95. Williams, B. (1). New trading dimensions: how to profit from chaos in stocks, bonds, and commodities, volume 72, 1998. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  96. Williams, L. (1985). The ultimate oscillator. Technical Analysis of Stocks and Commodities, 3(4):140–141.
    Paper not yet in RePEc: Add citation now
  97. Wysocki, A. & Lawrynczuk, M. (2010). An investment strategy for the stock exchange using neural networks. In Federated Conference on Computer Science and Information Systems, pages 183–190, 2013.
    Paper not yet in RePEc: Add citation now
  98. Zhang, K., Kwok, J. T., & Parvin, B. (2009). Prototype vector machine for large scale semisupervised learning. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1233–1240. ACM.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting in factor augmented regressions under structural change. (2024). Kapetanios, George ; Massacci, Daniele.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:40:y:2024:i:1:p:62-76.

    Full description at Econpapers || Download paper

  2. Forecasting the equity premium with frequency-decomposed technical indicators. (2024). Stein, Tobias.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:40:y:2024:i:1:p:6-28.

    Full description at Econpapers || Download paper

  3. Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?. (2023). Guo, Yangli ; Wang, Jiqian ; Ma, Feng ; Bouri, Elie.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:4:p:970-988.

    Full description at Econpapers || Download paper

  4. Forecasting equity risk premium: A new method based on wavelet de‐noising. (2023). Dai, Zhifeng ; Kang, Jie ; Yin, Hua.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:28:y:2023:i:4:p:4331-4352.

    Full description at Econpapers || Download paper

  5. Equity premium prediction: The role of information from the options market. (2023). Voukelatos, Nikolaos ; Apergis, Iraklis ; Panopoulou, Ekaterini ; Alexandridis, Antonios K.
    In: Journal of Financial Markets.
    RePEc:eee:finmar:v:64:y:2023:i:c:s1386418122000908.

    Full description at Econpapers || Download paper

  6. Forecasting realized volatility with wavelet decomposition. (2023). Souropanis, Ioannis ; Vivian, Andrew.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:74:y:2023:i:c:s0927539823000993.

    Full description at Econpapers || Download paper

  7. Forecasting crude oil market returns: Enhanced moving average technical indicators. (2022). Zhang, Yaojie ; Wang, Yudong ; Liu, LI ; Wen, Danyan.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:76:y:2022:i:c:s0301420722000216.

    Full description at Econpapers || Download paper

  8. Stock market return predictability: A combination forecast perspective. (2022). Lv, Wendai ; Qi, Jipeng.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:84:y:2022:i:c:s105752192200326x.

    Full description at Econpapers || Download paper

  9. Beating the Average: Equity Premium Variations, Uncertainty, and Liquidity. (2022). Wagner, Niklas ; Batten, Jonathan ; Kinateder, Harald.
    In: Abacus.
    RePEc:bla:abacus:v:58:y:2022:i:3:p:567-588.

    Full description at Econpapers || Download paper

  10. Forecasting stock returns with large dimensional factor models. (2021). Soccorsi, Stefano ; Massacci, Daniele ; Giovannelli, Alessandro.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:63:y:2021:i:c:p:252-269.

    Full description at Econpapers || Download paper

  11. Beta dispersion and market timing. (2020). Kuntz, Laura-Chloe.
    In: Discussion Papers.
    RePEc:zbw:bubdps:462020.

    Full description at Econpapers || Download paper

  12. Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?. (2020). Dichtl, Hubert.
    In: Review of Financial Economics.
    RePEc:wly:revfec:v:38:y:2020:i:2:p:352-378.

    Full description at Econpapers || Download paper

  13. Forecasting Stock Returns with Large Dimensional Factor Models. (2020). Soccorsi, Stefano ; Massacci, Daniele ; Giovannelli, Alessandro.
    In: Working Papers.
    RePEc:lan:wpaper:305661169.

    Full description at Econpapers || Download paper

  14. Forecasting excess returns of the gold market: Can we learn from stock market predictions?. (2020). Dichtl, Hubert.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:19:y:2020:i:c:s2405851319300716.

    Full description at Econpapers || Download paper

  15. Forecasting commodity prices out-of-sample: Can technical indicators help?. (2020). Wang, Yudong ; Liu, LI ; Wu, Chongfeng.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:2:p:666-683.

    Full description at Econpapers || Download paper

  16. Beta dispersion and market timing. (2020). Kuntz, Laura-Chloe.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:59:y:2020:i:c:p:235-256.

    Full description at Econpapers || Download paper

  17. Equity premium prediction and optimal portfolio decision with Bagging. (2020). Yin, Anwen.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:54:y:2020:i:c:s1062940820301686.

    Full description at Econpapers || Download paper

  18. Deeply Equal-Weighted Subset Portfolios. (2020). Il, Sang.
    In: Papers.
    RePEc:arx:papers:2006.14402.

    Full description at Econpapers || Download paper

  19. Equity Premium Prediction with Structural Breaks: A Two-Stage Forecast Combination Approach. (2019). Yin, Anwen.
    In: International Journal of Economics and Finance.
    RePEc:ibn:ijefaa:v:11:y:2019:i:12:p:50.

    Full description at Econpapers || Download paper

  20. Out-of-sample equity premium prediction in the presence of structural breaks. (2019). Yin, Anwen.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:65:y:2019:i:c:s1057521918304745.

    Full description at Econpapers || Download paper

  21. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?. (2019). Zhang, Yaojie ; Wang, Yudong ; Ma, Feng.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:54:y:2019:i:c:p:97-117.

    Full description at Econpapers || Download paper

  22. Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators. (2019). Gabbouj, Moncef ; Kanniainen, Juho ; Iosifidis, Alexandros ; Ntakaris, Adamantios.
    In: Papers.
    RePEc:arx:papers:1907.09452.

    Full description at Econpapers || Download paper

  23. Forecasting stock market returns by summing the frequency-decomposed parts. (2018). Verona, Fabio ; Faria, Gonçalo.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:45:y:2018:i:c:p:228-242.

    Full description at Econpapers || Download paper

  24. Forecasting the aggregate oil price volatility in a data-rich environment. (2018). Zhang, Yaojie ; Wahab, M. I. M., ; Liu, Jing ; Ma, Feng.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:72:y:2018:i:c:p:320-332.

    Full description at Econpapers || Download paper

  25. Forecasting stock market returns by summing the frequency-decomposed parts. (2017). Verona, Fabio ; Faria, Gonçalo.
    In: CEF.UP Working Papers.
    RePEc:por:cetedp:1702.

    Full description at Econpapers || Download paper

  26. Forecasting stock market returns by summing the frequency-decomposed parts. (2016). Verona, Fabio ; Faria, Gonçalo.
    In: Bank of Finland Research Discussion Papers.
    RePEc:zbw:bofrdp:rdp2016_029.

    Full description at Econpapers || Download paper

  27. Optimized Indicators of Technical Analysis on the New York Stock Exchange. (2016). Sirucek, Martin ; Irek, Martin ; Ima, Karel.
    In: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.
    RePEc:mup:actaun:actaun_2016064062123.

    Full description at Econpapers || Download paper

  28. Forecasting stock market returns by summing the frequency-decomposed parts. (2016). Verona, Fabio ; Faria, Gonçalo.
    In: Working Papers de Economia (Economics Working Papers).
    RePEc:cap:wpaper:052016.

    Full description at Econpapers || Download paper

  29. Forecasting stock market returns by summing the frequency-decomposed parts. (2016). Faria, Gonalo ; Verona, Fabio.
    In: Research Discussion Papers.
    RePEc:bof:bofrdp:2016_029.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 12:28:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.