A. C. Thompson. Valuation of path-dependent contingent claims with multiple exercise decisions over time: the case of take or pay. Journal of Financial and Quantitative Analysis, 30:271–293, 1995.
- A. Reghai, G. Boya, and G. Vong. Local volatility: smooth calibration and fast usage. Working Paper, 2012. doi: 10.2139/ssrn.2008215. URL https://ssrn.com/abstract=2008215. J. Schulman, P. Moritz, M. Levine, S. Jordan, and P. Abbeel. Highdimensional continuous control using generalized advantage estimation.
Paper not yet in RePEc: Add citation now
B. Hambly, S. Howison, and T. Kluge. Modeling spikes and pricing swing options in electricity markets. Quantitative Finance, 9(8):937–949, 2009.
- B. Zhang and C. Oosterlee. An efficient pricing algorithm for swing options based on fourier cosine expansions. Journal of Computational Finance, 4 (6):3–34, 2013.
Paper not yet in RePEc: Add citation now
C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, and D. Reboul-Salze. Numerical methods for the pricing of swing options: a stochastic control approach. Methodology and Computing in Applied Probability, 8(4):517–540, 2006.
- D. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM, 4(12):547–560, 1965.
Paper not yet in RePEc: Add citation now
- Daluiso, Nastasi, Pallavicini, Sartorelli, Pricing Commodity Swing Options 33 L. Kirkby and S. Deng. Swing option pricing by dynamic programming with b-spline density projection. International Journal of Theoretical and Applied Finance, 22(8), 2020.
Paper not yet in RePEc: Add citation now
- E. Nastasi, A. Pallavicini, and G. Sartorelli. Smile modelling in commodity markets. Working paper, 2018. URL arXiv.org.
Paper not yet in RePEc: Add citation now
- F. Benth, J. Lempa, and T. Nilssen. On the optimal exercise of swing options in electricity markets. Journal of Energy Markets, 4(4):3–28, 2012.
Paper not yet in RePEc: Add citation now
F. Benth, M. Piccirilli, and T. Vargiolu. Additive energy forward curves in a heath-jarrow-morton framework. Working paper, 2018. URL https: //arxiv.org/abs/1709.03310.
- G. Haarbrücker and D. Kuhn. Valuation of electricity swing options by multistage stochastic programming. Management Science, 45(4):889–899, 2009.
Paper not yet in RePEc: Add citation now
H. Berestycki, J. Busca, and I. Florent. Asymptotics and calibration of local volatility models. Quantitative Finance, 2(1):61–69, 2002.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. Working paper, 2017. URL arXiv.org.
Paper not yet in RePEc: Add citation now
M. Eriksson, J. Lempa, and T. Nilssen. Swing options in commodity markets: A multidimensional lévy diffusion model. Mathematical Methods of Operational Research, 79(1):31–67, 2013.
O. Bardou, S. Bouthemy, and G. Pagès. Optimal quantization for the pricing of swing options. Applied Mathematical Finance, 16(2):183–217, 2009.
P. Jaillet, E. I. Ronn, and S. Tompaidis. Valuation of commodity-based swing options. Management Science, 50(7), 2004.
- P. Kolm and G. Ritter. Dynamic replication and hedging: A reinforcement learning approach. The Journal of Financial Data Science, 1(1):159–171, 2019.
Paper not yet in RePEc: Add citation now
- Proceedings of ICLR 2016, 2016. URL arXiv.org.
Paper not yet in RePEc: Add citation now
R. Carmona and N. Touzi. Optimal multiple stopping and valuation of swing options. Mathematical Finance, 18(2):239–268, 2008.
S. Becker, P. Cheridito, A. Jentzen, and T. Welti. Solving high-dimensional optimal stopping problems using deep learning. Working paper, 2019. URL arXiv.org.