Agnolucci, P., 2009. Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models. Energy Econ. 31, 316–321. doi: 10.1016/j.eneco.2008.11.001.
Ames, M., Bagnarosa, G., Matsui, T., Peters, G.W., Shevchenko, P.V., 2020. Which risk factors drive oil futures price curves? Energy Econ. 87, 104676. doi: 10.1016/j.eneco.2020.104676.
Arbatli, E.C., Davis, S.J., Ito, A., Miake, N., Saito, I., 2017. Policy uncertainty in Japan. IMF Working Paper doi: 10.5089/9781484300671.001.
Arouri, M.E.H., Jouini, J., Nguyen, D.K., 2011. Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. J. Int. Money Financ. 30, 13871405. doi: 10.1016/j.jimonfin.2011.07.008.
Asgharian, H., Hou, A., Javed, F., 2013. The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach. J. Forecast. 32, 600–612. doi: 10.1002/for.2256.
Bakas, D., Triantafyllou, A., 2019. Volatility forecasting in commodity markets using macro uncertainty. Energy Econ. 81, 79–94. doi: 10.1016/j.eneco.2019.03.016.
- Baker, S.R., Bloom, N., Davis, S.J., 2013. Measuring economic policy uncertainty. Chicago Booth Research Paper.
Paper not yet in RePEc: Add citation now
Baker, S.R., Bloom, N., Davis, S.J., 2016. Measuring economic policy uncertainty. Quart. J. Econ. 131, 1593–1636. doi: 10.1093/qje/qjw024.
Bloom, N., 2009. The impact of uncertainty shocks. Econometrica 77, 623–685. doi: 10.3982/ECTA6248.
Castelnuovo, E., Tran, T.D., 2017. Google it up! A google trends-based uncertainty index for the United States and Australia. Econ. Lett. 161, 149–153. doi: 10.1016/j.econlet.2017.09.032.
Chang, C.P., Lee, C.C., 2015. Do oil spot and futures prices move together? Energy Econ. 50, 379–390. doi: 10.1016/j.eneco.2015.02.014.
Cheng, B., Nikitopoulos, C.S., Schlogl, E., 2018. Pricing of long-dated commodity derivatives: Do stochastic interest rates matter? J. Bank.
Dai, P.F., Xiong, X., Zhou, W.X., 2019. Visibility graph analysis of economy policy uncertainty indices. Physica A 531, 121748. doi: 10.1016/j.physa.2019.121748.
- Dai, P.F., Xiong, X., Zhou, W.X., 2020. A global economic policy uncertainty index from principal component analysis. Financ. Res. Lett. , 101686doi: 10.1016/j.frl.2020.101686.
Paper not yet in RePEc: Add citation now
Davis, S., 2016. An index of global economic policy uncertainty. Technical Report. NBER Working Paper No.22740. doi: 10.3386/w22740.
Diebold, F.X., Mariano, R.S., 2002. Comparing predictive accuracy. J. Bus. Econ. Stat. 20, 134–144. doi: 10.1198/073500102753410444.
Engle, R., Rangel, J.G., 2008. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Rev. Financ. Stud. 21, 1187–1222. doi: 10.1093/rfs/hhn004.
Engle, R.F., Ghysels, E., Sohn, B., 2013. Stock market volatility and macroeconomic fundamentals. Rev. Econ. Stat. 95, 776–797.
Ergen, I., Rizvanoghlu, I., 2016. Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach.
Fang, L., Bouri, E., Gupta, G., Roubaud, D., 2019. Does global economic uncertainty matter for the volatility and hedging effectiveness of bitcoin? Int. Rev. Financ. Anal. 61, 29–36. doi: 10.1016/j.irfa.2018.12.010.
Fang, L., Chen, B., Yu, H., Qian, Y., 2018. The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH-MIDAS approach. J. Fut. Markets 38, 413–422. doi: 10.1002/fut.21897.
Fazelabdolabadi, B., 2019. Uncertainty and energy-sector equity returns in Iran: a Bayesian and quasi-Monte Carlo time-varying analysis. Financ.
Geman, H., Kharoubi, C., 2008. WTI crude oil futures in portfolio diversification: The time-to-maturity effect. J. Bank. Financ. 32, 2553–2559. doi: 10.1016/j.jbankfin.2008.04.002.
Ghysels, E., Arthur, S., Rossen, V., 2007. MIDAS regressions: Further results and new directions. Econometr. Rev. 26, 53–90. doi: 10.1080/07474930600972467.
Ghysels, E., Santa-Clara, P., Valkanov, R., 2004. The MIDAS touch: Mixed data sampling regression models. CIRANO Working Papers 2004s-20. CIRANO.
Hammoudeh, S., Nguyen, D.K., Reboredo, J.C., Wen, X., 2014. Dependence of stock and commodity futures markets in China: Implications for portfolio investment. Emerg. Markets Rev. 21, 183–200. doi: 10.1016/j.ememar.2014.09.002.
Hasanov, A.S., Shaiban, M.S., Freedi, A., 2020. Forecasting volatility in the petroleum futures markets: A re-examination and extension. Energy Econ. 86, 104626. doi: 10.1016/j.eneco.2019.104626.
Holmes, M.J., Otero, J., 2019. Re-examining the movements of crude oil spot and futures prices over time. Energy Econ. 82, 224–236. doi: 10.1016/j.eneco.2017.08.034.
Ji, Q., Zhang, D., Zhao, Y., 2020. Searching for safe-haven assets during the COVID-19 pandemic. Int. Rev. Financ. Anal. 71, 101526. doi: 10.1016/j.irfa.2020.101526.
- Joët, M., ValeÃŒÂrie, M., Tovonony, R., 2017. Does the volatility of commodity prices reflect macroeconomic uncertainty? Energy Econ. 68, 313–326. doi: 10.1016/j.eneco.2017.09.017.
Paper not yet in RePEc: Add citation now
Jones, C.M., Kaul, G., 1996. Oil and the stock markets. J. Financ. 51, 463–491. doi: 10.2307/2329368.
Jurado, K., Ludvigson, S.C., Ng, S., 2015. Measuring uncertainty. Amer. Econ. Rev. 105, 1177–1216. doi: 10.1257/aer.20131193.
Kang, S.H., Yoon, S.M., 2013. Modeling and forecasting the volatility of petroleum futures prices. Energy Econ. 36, 354–362. doi: 10.1016/j.eneco.2012.09.010.
Klein, T., 2017. Dynamic correlation of precious metals and flight-to-quality in developed markets. Financ. Res. Lett. 23, 283–290. doi: 10.1016/j.frl.2017.05.002.
Liu, X., Pan, F., Yuan, L., Chen, Y., 2019. The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula. Energy 182, 999–1012. doi: 10.1016/j.energy.2019.06.071.
Liu, Y., Han, L., Yin, L., 2018. Does news uncertainty matter for commodity futures markets? Heterogeneity in energy and non-energy sectors. J.
Lucey, B.M., Sharma, S.S., Vigne, S.A., 2017. Gold and inflation(s)A time-varying relationship. Econ. Model. 67, 88–101. doi: 10.1016/j.econmod.2016.10.008.
Lv, X.D., Shan, X., 2013. Modeling natural gas market volatility using GARCH with different distributions. Physica A 392, 5685–5699. doi: 10.1016/j.physa.2013.07.038.
Manela, A., Moreira, A., 2017. News implied volatility and disaster concerns. J. Financ. Econ. 123, 137–162. doi: 10.1016/j.jfineco.2016.01.032.
Moore, A., 2017. Measuring economic uncertainty and its effects. Econ. Rec. 93, 550–575. doi: 10.1111/1475-4932.12356.
Narayan, P.K., Narayan, S., Zheng, X., 2010. Gold and oil futures markets: Are markets efficient? Appl. Energy 87, 3299–3303. doi: 10.1016/j.apenergy.2010.03.020.
Nguyen, D.K., Sensoy, A., Sousa, R.M., Uddin, G.S., 2020. U.S. equity and commodity futures markets: Hedging orfinancialization? Energy Econ. 86, 104660. doi: 10.1016/j.eneco.2019.104660.
Nguyen, D.K., Walther, T., 2020. Modeling and forecasting commodity market volatility with long-term economic and financial variables. J.
PaÃŒÂstor, L., Veronesi, P., 2012. Uncertainty about government policy and stock prices. J. Financ. 67, 1219–1264. doi: 10.1111/j.1540-6261.2012.01746.x. PaÃŒÂstor, L., Veronesi, P., 2013. Political uncertainty and risk premia. J. Financ. Econ. 110, 520–545. doi: 10.1016/j.jfineco.2013.08.007.
Sadorsky, P., 1999. Oil price shocks and stock market activity. Energy Econ. 21, 449–469. doi: 10.1016/S0140-9883(99)00020-1.
Wang, J., Shao, W., Kim, J., 2020. Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures. Chaos Solitons Fractals 136, 109896. doi: 10.1016/j.chaos.2020.109896.
Wei, Y., Liu, J., Lai, X., Y., H., 2017. Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Econ. 68, 141–150. doi: 10.1016/j.eneco.2017.09.016.
Yan, L., Irwin, S.H., Sanders, D.R., 2018. Mapping algorithms, agricultural futures, and the relationship between commodity investment flows and crude oil futures prices. Energy Econ. 72, 486–504. doi: 10.1016/j.eneco.2018.04.005.
Zhang, Y., Ma, F., Wei, Y., 2019. Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches. Energy Econ. 81, 1109–1120. doi: 10.1016/j.eneco.2019.05.018.