- Adrian, T., Boyarchenko, N., and Giannone, D. (2019). Vulnerable growth. American Economic Review, 109:1263â89.
Paper not yet in RePEc: Add citation now
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76:1481â1536.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized kernels in practice: Trades and quotes. Econometrics Journal, 12:C1âC32.
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. The Review of Economics and Statistics, 72:498â505.
- Box, G. E. P. (1980). Sampling and Bayesâ inference in scientific modelling and robustness. Journal of the Royal Statistical Society: Series A (General), 143:383â430.
Paper not yet in RePEc: Add citation now
- Carriero, A., Clark, T., Marcellino, M., and Mertens, E. (2022). Addressing COVID-19 outliers in BVARs with stochastic volatility. Review of Economics and Statistics. forthcoming.
Paper not yet in RePEc: Add citation now
Catania, L., Grassi, S., and Ravazzolo, F. (2019). Forecasting cryptocurrencies under model and parameter instability. International Journal of Forecasting, 35:485â501.
Chan, J. C. C. (2020). Large Bayesian VARs: A flexible Kronecker error covariance structure. Journal of Business & Economic Statistics, 38:68â79.
Chen, Y.-T. (2011). Moment tests for density forecast evaluation in the presence of parameter estimation uncertainty. Journal of Forecasting, 30:409â450.
Chernozhukov, V., FernaÌndez-Val, I., and Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica, 78:1093â1125.
- Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R. (2004). The Schaake shuffle: A method for reconstructing spaceâtime variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology, 5:243â262.
Paper not yet in RePEc: Add citation now
Clark, T. E. (2011). Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic Statistics, 29:327â341.
Clements, M. P. (2014). Forecast uncertaintyâex ante and ex post: US inflation and output growth. Journal of Business & Economic Statistics, 32:206â216.
Clements, M. P. and Smith, J. (2002). Evaluating multivariate forecast densities: a comparison of two approaches. International Journal of Forecasting, 18:397 â 407.
- Cockayne, J., Graham, M. M., Oates, C. J., Sullivan, T., and Teymur, O. (2022). Testing whether a learning procedure is calibrated. Journal of Machine Learning Research, 23:1â36.
Paper not yet in RePEc: Add citation now
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7:174â196.
- Craiu, R. V. and Rosenthal, J. S. (2014). Bayesian computation via Markov chain Monte Carlo. Annual Review of Statistics and Its Application, 1:179â201.
Paper not yet in RePEc: Add citation now
- Dawid, A. P. (1984). Present position and potential developments: Some personal views: Statistical theory: The prequential approach. Journal of the Royal Statistical Society: Series A (General), 147:278â290.
Paper not yet in RePEc: Add citation now
- Dawid, A. P. and Sebastiani, P. (1999). Coherent dispersion criteria for optimal experimental design. The Annals of Statistics, 27:65 â 81.
Paper not yet in RePEc: Add citation now
Del Negro, M. and Primiceri, G. E. (2015). Time varying structural vector autoregressions and monetary policy: a corrigendum. The Review of Economic Studies, 82:1342â1345.
Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13:253â263.
Diebold, F. X., Gunther, T. A., and Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk management. International Economic Review, 39:863â883.
Diebold, F. X., Hahn, J., and Tay, A. S. (1999). Multivariate density forecast evaluation and calibration in financial risk management: High-frequency returns on foreign exchange. The Review of Economics and Statistics, 81:661â673.
Diks, C., Panchenko, V., Sokolinskiy, O., and van Dijk, D. (2014). Comparing the accuracy of multivariate density forecasts in selected regions of the copula support. Journal of Economic Dynamics and Control, 48:79â94.
- Dimitriadis, T., Gneiting, T., and Jordan, A. I. (2021). Stable reliability diagrams for probabilistic classifiers. Proceedings of the National Academy of Sciences, 118:e2016191118.
Paper not yet in RePEc: Add citation now
Dovern, J. and Manner, H. (2020). Order-invariant tests for proper calibration of multivariate density forecasts. Journal of Applied Econometrics, 35:440â456.
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182:389â402.
- GalvaÌo, A. and Mitchell, J. (2019). Measuring data uncertainty: An application using the Bank of Englandâs fan charts for historical GDP growth. WBS EMF Working Paper Series no., 24.
Paper not yet in RePEc: Add citation now
- Genest, C. and Rivest, L.-P. (2001). On the multivariate probability integral transformation. Statistics & Probability Letters, 53:391â399.
Paper not yet in RePEc: Add citation now
Giacomini, R. and Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of Applied Econometrics, 25:595â620.
Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica, 74:1545â 1578.
Gneiting, T. (2008). Editorial: Probabilistic forecasting. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171:319â321.
- Gneiting, T. and Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1:125â151.
Paper not yet in RePEc: Add citation now
Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102:359â378.
- Gneiting, T. and Ranjan, R. (2013). Combining predictive distributions. Electronic Journal of Statistics, 7:1747â1782.
Paper not yet in RePEc: Add citation now
- Gneiting, T. and Resin, J. (2022). Regression diagnostics meets forecast evaluation: Conditional calibration, reliability diagrams, and coefficient of determination. Preprint, arXiv:2108.03210.
Paper not yet in RePEc: Add citation now
Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69:243â 268.
Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., and Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test, 17:211.
GonzaÌlez-Rivera, G. and Yoldas, E. (2012). Autocontour-based evaluation of multivariate predictive densities. International Journal of Forecasting, 28:328 â 342.
Grothe, O., KaÌchele, F., and KruÌger, F. (2022). From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price foreasting. Preprint, arxiv:2204.10154.
Guler, K., Ng, P. T., and Xiao, Z. (2017). MincerâZarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions. Journal of Forecasting, 36:651â679.
Gupta, R., Huber, F., and Piribauer, P. (2020). Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models. International Review of Financial Analysis, 68:101456.
Heinrich, C., Hellton, K. H., Lenkoski, A., and Thorarinsdottir, T. L. (2021). Multivariate postprocessing methods for high-dimensional seasonal weather forecasts. Journal of the American Statistical Association, 116:1048â1059.
Held, L., Rufibach, K., and Balabdaoui, F. (2010). A score regression approach to assess calibration of continuous probabilistic predictions. Biometrics, 66:1295â1305.
- KnuÌppel, M. (2015). Evaluating the calibration of multi-step-ahead density forecasts using raw moments. Journal of Business & Economic Statistics, 33:270â281.
Paper not yet in RePEc: Add citation now
Ko, S. I. and Park, S. Y. (2013). Multivariate density forecast evaluation: A modified approach. International Journal of Forecasting, 29:431 â 441.
- Koenker, R. (2021). quantreg: Quantile Regression. R package version 5.83.
Paper not yet in RePEc: Add citation now
Koop, G. M. (2013). Forecasting with medium and large Bayesian VARS. Journal of Applied Econometrics, 28:177â203.
- KruÌger, F. (2015). bvarsv: Bayesian analysis of a vector autoregressive model with stochastic volatility and time-varying parameters.
Paper not yet in RePEc: Add citation now
- KruÌger, F. and Pavlova, L. (2022). Quantifying subjective uncertainty in survey expectations. Preprint, available at https://ewifo.econ.kit.edu/downloads/KruegerPavlova2022.pdf.
Paper not yet in RePEc: Add citation now
KruÌger, F., Lerch, S., Thorarinsdottir, T. L., and Gneiting, T. (2021). Predictive inference based on Markov chain Monte Carlo output. International Statistical Review, 89:274â301.
- Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., and Gneiting, T. (2017). Forecasterâs dilemma: extreme events and forecast evaluation. Statistical Science, 32:106â127.
Paper not yet in RePEc: Add citation now
McAlinn, K., Aastveit, K. A., Nakajima, J., and West, M. (2020). Multivariate Bayesian predictive synthesis in macroeconomic forecasting. Journal of the American Statistical Association, 115:1092â1110.
Mincer, J. A. and Zarnowitz, V. (1969). The evaluation of economic forecasts. In Mincer, J. A., editor, Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3â46. Columbia University Press, New York.
- Mosler, K. and Mozharovskyi, P. (2022). Choosing among notions of multivariate depth statistics. Statistical Science, 37:348â368.
Paper not yet in RePEc: Add citation now
- Neyman, J. (1937). âSmooth testâ for goodness of fit. Scandinavian Actuarial Journal, 20:150â199.
Paper not yet in RePEc: Add citation now
Pohle, M.-O. (2020). The Murphy decomposition and the calibration-resolution principle: A new perspective on forecast evaluation. Preprint, arxiv:2005.01835.
Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72:821â852.
- Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23:470â472.
Paper not yet in RePEc: Add citation now
Rossi, B. and Sekhposyan, T. (2019). Alternative tests for correct specification of conditional predictive densities. Journal of Econometrics, 208:638â657.
- RuÌschendorf, L. (2009). On the distributional transform, Sklarâs theorem, and the empirical copula process. Journal of Statistical Planning and Inference, 139:3921â3927.
Paper not yet in RePEc: Add citation now
- Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T. (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science, 28:616â640.
Paper not yet in RePEc: Add citation now
- Smith, J. Q. (1985). Diagnostic checks of non-standard time series models. Journal of Forecasting, 4:283â291.
Paper not yet in RePEc: Add citation now
SzeÌkely, G. J. and Rizzo, M. L. (2005). A new test for multivariate normality. Journal of Multivariate Analysis, 93:58â80.
- Theil, H. (1961). Economic Forecasts and Policy. Contributions to economic analysis; 15. NorthHolland Publ. Co., Amsterdam, 2. rev. edition.
Paper not yet in RePEc: Add citation now
- Thorarinsdottir, T. L. and Schuhen, N. (2018). Verification: Assessment of calibration and accuracy. In Vannitsem, S., Wilks, D. S., and Messner, J., editors, Statistical postprocessing of ensemble forecasts, pages 155â186. Elsevier.
Paper not yet in RePEc: Add citation now
- Thorarinsdottir, T. L., Scheuerer, M., and Heinz, C. (2016). Assessing the calibration of highdimensional ensemble forecasts using rank histograms. Journal of Computational and Graphical Statistics, 25:105â122.
Paper not yet in RePEc: Add citation now
Tsyplakov, A. (2011). Evaluating density forecasts: A comment. Preprint, available at https: //mpra.ub.uni-muenchen.de/32728/1/MPRA_paper_32728.pdf.
Tsyplakov, A. (2014). Theoretical guidelines for a partially informed forecast examiner. Preprint, available at https://mpra.ub.uni-muenchen.de/67333/.
- Vannitsem, S., Wilks, D. S. H., and Messner, J. W., editors (2018). Statistical Postprocessing of Ensemble Forecasts. Elsevier, Amsterdam, Netherlands.
Paper not yet in RePEc: Add citation now
Wei, W., Balabdaoui, F., and Held, L. (2017). Calibration tests for multivariate Gaussian forecasts. Journal of Multivariate Analysis, 154:216â233.
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica, 64:1067â1084.
- Wilks, D. S. (2017). On assessing calibration of multivariate ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 143:164â172.
Paper not yet in RePEc: Add citation now
- Ziegel, J. F. (2015). Copula calibration. Oberwolfach Reports, 12:1091â1094.
Paper not yet in RePEc: Add citation now
- Ziegel, J. F. and Gneiting, T. (2014). Copula calibration. Electronic Journal of Statistics, 8:2619â 2638.
Paper not yet in RePEc: Add citation now
Ziel, F. and Berk, K. (2019). Multivariate forecasting evaluation: On sensitive and strictly proper scoring rules. Preprint, arxiv:1910.07325.pdf.
ZÌikesÌ, F. and BarunıÌk, J. (2015). Semi-parametric conditional quantile models for financial returns and realized volatility. Journal of Financial Econometrics, 14:185â226.
- Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Annals of Statistics, 28:461â482. A Additional simulations A.1 Size Here we explore the size of our proposed methods in two setups that are potentially more challenging than the one in Section 4: First, a setup involving time series dependence in forecasts and realizations. Second, a setup in which the true model follows a multivariate t (rather than normal) distribution.
Paper not yet in RePEc: Add citation now