create a website

Sparse Interval-valued Time Series Modeling with Machine Learning. (2024). Wang, Shouyang ; Sun, Yuying ; Hong, Yongmiao ; Bao, Haowen.
In: Papers.
RePEc:arx:papers:2411.09452.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 69

References cited by this document

Cocites: 35

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Babii, A., Ghysels, E., and Striaukas, J. (2022). Machine learning time series regressions with an application to nowcasting. Journal of Business & Economic Statistics, 40(3):1094–1106.

  2. Benhamou, F. and Granvilliers, L. (2006). Continuous and interval constraints. Foundations of Artificial Intelligence, 2:571–603.
    Paper not yet in RePEc: Add citation now
  3. Bia, M., Huber, M., and Lafférs, L. (2024). Double machine learning for sample selection models. Journal of Business & Economic Statistics, 42(3):958–969.

  4. Billard, L. and Diday, E. (2000). Regression analysis for interval-valued data. In Data Analysis, Classification, and Related Methods, pages 369–374. Springer Berlin Heidelberg, Berlin, Heidelberg.
    Paper not yet in RePEc: Add citation now
  5. Billard, L. and Diday, E. (2002). Symbolic regression analysis. In Classification, Clustering, and Data Analysis, pages 281–288. Springer.
    Paper not yet in RePEc: Add citation now
  6. Bock, H.-H. and Diday, E. (1999). Analysis of symbolic data: exploratory methods for extracting statistical information from complex data. Springer Science & Business Media.
    Paper not yet in RePEc: Add citation now
  7. Bock, H.-H. and Diday, E. (2000). Symbolic objects. In Analysis of Symbolic Data, pages 54–77. Springer.
    Paper not yet in RePEc: Add citation now
  8. Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37(4):373–384.
    Paper not yet in RePEc: Add citation now
  9. Brito, P. (2007). Modelling and analysing interval data. In Advances in Data Analysis, pages 197–208. Springer Berlin Heidelberg, Berlin, Heidelberg.
    Paper not yet in RePEc: Add citation now
  10. Buansing, T. T., Golan, A., and Ullah, A. (2020). An information-theoretic approach for forecasting interval-valued S&P 500 daily returns. International Journal of Forecasting, 36(3):800–813.

  11. Caner, M. and Eliaz, K. (2024). Should humans lie to machines? the incentive compatibility of lasso and glm structured sparsity estimators. Journal of Business & Economic Statistics, pages 1–10.

  12. Chai, J., Xing, L.-M., Zhou, X.-Y., Zhang, Z. G., and Li, J.-X. (2018). Forecasting the WTI crude oil price by a hybrid-refined method. Energy Economics, 71:114–127.

  13. Corielli, F. and Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8):2215–2233.

  14. Dias, S. and Brito, P. (2017). Off the beaten track: A new linear model for interval data. European Journal of Operational Research, 258(3):1118–1130.

  15. Dimitrova, N., Markov, S., and Popova, E. (1992). Extended interval arithmetics: new results and applications. Computer arithmetic and enclosure methods, pages 225–232.
    Paper not yet in RePEc: Add citation now
  16. Efron, B., Hastie, T., and Tibshirani, J. R. (2004). Least angle regression. Annals of Statistics, 32(2):407–451.
    Paper not yet in RePEc: Add citation now
  17. Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Publications of American Statal Association, 96(456):1348–1360.

  18. Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32(3):928–961.
    Paper not yet in RePEc: Add citation now
  19. Gao, J., Peng, B., and Yan, Y. (2024). Robust inference for high-dimensional panel data models.

  20. Giove, S., Funari, S., and Nardelli, C. (2006). An interval portfolio selection problem based on regret function. European Journal of Operational Research, 170(1):253–264.

  21. Golan, A. and Ullah, A. (2017). Interval estimation: An information theoretic approach. Econometric Reviews, 36(6-9):781–795.

  22. González-Rivera, G. and Lin, W. (2013). Constrained regression for interval-valued data. Journal of Business & Economic Statistics, 31(4):473–490.

  23. Gu, S., Kelly, B., and Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial Studies, 33(5):2223–2273.

  24. Guo, X., Li, R., Liu, J., and Zeng, M. (2023). Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic. Journal of Econometrics, 235(1):166–179.

  25. Han, A., Hong, Y., Sun, Y., and Wang, S. (2020). Autoregressive conditional models for intervalvalued time series data. In Manuscript, Department of Economics, Cornell University, page 27.
    Paper not yet in RePEc: Add citation now
  26. Han, A., Hong, Y., Wang, S., and Yun, X. (2016). A vector autoregressive moving average model for interval-valued time series data. In Essays in Honor of Aman Ullah. Emerald Group Publishing Limited.
    Paper not yet in RePEc: Add citation now
  27. He, A. W., Kwok, J. T., and Wan, A. T. (2010). An empirical model of daily highs and lows of west texas intermediate crude oil prices. Energy Economics, 32(6):1499–1506.

  28. He, Y., Han, A., Hong, Y., Sun, Y., and Wang, S. (2021). Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models. Econometric Reviews, 40(6):584– 606.

  29. He, Y., Kong, X., Yu, L., and Zhang, X. (2022). Large-dimensional factor analysis without moment constraints. Journal of Business & Economic Statistics, 40(1):302–312.

  30. Huang, J., Horowitz, J. L., and Ma, S. (2008a). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Annals of Statistics, 36(2):587 – 613.
    Paper not yet in RePEc: Add citation now
  31. Huang, J., Ma, S., and Zhang, C.-H. (2008b). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, pages 1603–1618.
    Paper not yet in RePEc: Add citation now
  32. Hukuhara, M. (1967). Integration des applications mesurables dont la valeur est un compact convexe, funkc. ekvacioj. 205-223. Funkcialaj Ekvacioj, 10.
    Paper not yet in RePEc: Add citation now
  33. Kaucher, E. (1980). Interval Analysis in the Extended Interval Space IR, pages 33–49. Springer Vienna, Vienna.
    Paper not yet in RePEc: Add citation now
  34. Körner, R. and Näther, W. (2002). On the variance of random fuzzy variables, pages 25–42. Physica-Verlag HD, Heidelberg.
    Paper not yet in RePEc: Add citation now
  35. Koop, G. and Korobilis, D. (2023). Bayesian dynamic variable selection in high dimensions. International Economic Review, 64(3):1047–1074.

  36. Lin, W. and González-Rivera, G. (2016). Interval-valued time series models: Estimation based on order statistics exploring the agriculture marketing service data. Computational Statistics & Data Analysis, 100:694–711.

  37. Lin, W. and González-Rivera, G. (2019). Extreme returns and intensity of trading. Journal of Applied Econometrics, 34(7):1121–1140.

  38. Maciel, L., Ballini, R., and Gomide, F. (2023). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 35(10):7149–7159.
    Paper not yet in RePEc: Add citation now
  39. Maciel, L., Vieira, R., Porto, A., Gomide, F., and Ballini, R. (2017). Evolving participatory learning fuzzy modeling for financial interval time series forecasting. In 2017 Evolving and Adaptive Intelligent Systems (EAIS), pages 1–8. IEEE.
    Paper not yet in RePEc: Add citation now
  40. Meier, L., Van De Geer, S., and Bühlmann, P. (2008). The group LASSO for logistic regression. Journal of Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71.

  41. Naser, H. (2016). Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach. Energy Economics, 56:75–87.

  42. Neto, E. d. A. L. and de Carvalho, F. d. A. (2008). Centre and range method for fitting a linear regression model to symbolic interval data. Computational Statistics & Data Analysis, 52(3):1500– 1515.
    Paper not yet in RePEc: Add citation now
  43. Neto, E. d. A. L. and de Carvalho, F. d. A. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics & Data Analysis, 54(2):333–347.
    Paper not yet in RePEc: Add citation now
  44. Premanode, B. and Toumazou, C. (2013). Improving prediction of exchange rates using differential EMD. Expert Systems with Applications, 40(1):377–384.
    Paper not yet in RePEc: Add citation now
  45. Rodrigues, P. M. M. and Salish, N. (2015). Modeling and forecasting interval time series with threshold models. Advances in Data Analysis and Classification, 9(1):41–57.
    Paper not yet in RePEc: Add citation now
  46. Sahu, B., Bhurjee, A. K., and Kumar, P. (2024). Efficient solutions for vector optimization problem on an extended interval vector space and its application to portfolio optimization. Expert Systems with Applications, 249:123653.
    Paper not yet in RePEc: Add citation now
  47. Shu, L., Shi, F., and Tian, G. (2020). High-dimensional index tracking based on the adaptive elastic net. Quantitative Finance, 20(9):1513–1530.
    Paper not yet in RePEc: Add citation now
  48. Strub, O. and Baumann, P. (2018). Optimal construction and rebalancing of index-tracking portfolios. European Journal of Operational Research, 264(1):370–387.

  49. Sun, Y., Bao, Q., Zheng, J., and Wang, S. (2020). Assessing the price dynamics of onshore and offshore rmb markets: An its model approach. China Economic Review, 62:101476.

  50. Sun, Y., Han, A., Hong, Y., and Wang, S. (2018). Threshold autoregressive models for intervalvalued time series data. Journal of Econometrics, 206(2):414–446.

  51. Sun, Y., Zhang, X., Wan, A. T., and Wang, S. (2021). Model averaging for interval-valued data. European Journal of Operational Research.
    Paper not yet in RePEc: Add citation now
  52. Tibshirani and Ryan, J. (2013). The lasso problem and uniqueness. Electronic Journal of Stats, 7(1):1456–1490.
    Paper not yet in RePEc: Add citation now
  53. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of Royal Statistical Society: Series B (Methodological), 58(1):267–288.
    Paper not yet in RePEc: Add citation now
  54. Utkin, L. V. (2019). An imprecise extension of svm-based machine learning models. Neurocomputing, 331:18–32.
    Paper not yet in RePEc: Add citation now
  55. Van Der Vaart, A. W. and Wellner, J. A. (1997). Weak convergence and empirical processes: with applications to statistics. Springer New York.
    Paper not yet in RePEc: Add citation now
  56. Wang, H., Guan, R., and Wu, J. (2012a). Cipca: Complete-information-based principal component analysis for interval-valued data. Neurocomputing, 86:158–169.
    Paper not yet in RePEc: Add citation now
  57. Wang, H., Guan, R., and Wu, J. (2012b). Linear regression of interval-valued data based on complete information in hypercubes. Journal of Systems Science and Systems Engineering, 21(4):422– 442.
    Paper not yet in RePEc: Add citation now
  58. Wang, X., Zhang, Z., and Li, S. (2016a). Set-valued and interval-valued stationary time series. Journal of Multivariate Analysis, 145:208–223.

  59. Wang, Y., Wu, C., and Yang, L. (2016b). Forecasting crude oil market volatility: A markov switching multifractal volatility approach. International Journal of Forecasting, 32(1):1–9.

  60. Wei, Y., Liu, J., Lai, X., and Hu, Y. (2017). Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics, 68:141–150.

  61. Wu, D., Dai, X., Zhao, R., Cao, Y., and Wang, Q. (2023). Pass-through from temperature intervals to china’s commodity futures’ interval-valued returns: Evidence from the varying-coefficient its model. Finance Research Letters, 58:104289.

  62. Wu, L., Yang, Y., and Liu, H. (2014). Nonnegative-LASSO and application in index tracking. Computational Statistics & Data Analysis, 70:116–126.

  63. Yang, K., Zhang, G., and Wang, D. (2024). Statistical inferences for a class of logistic smooth transition interval autoregressive models. Available at SSRN 4721156.
    Paper not yet in RePEc: Add citation now
  64. Yang, W., Han, A., Hong, Y., and Wang, S. (2016). Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling. Quantitative Finance, 16(12):1917–1928.

  65. Yang, Z., Lin, D. K., and Zhang, A. (2019). Interval-valued data prediction via regularized artificial neural network. Neurocomputing, 331:336–345.
    Paper not yet in RePEc: Add citation now
  66. Zhang, D., Li, Q., Mugera, A. W., and Ling, L. (2020). A hybrid model considering cointegration for interval-valued pork price forecasting in china. Journal of Forecasting, 39(8):1324–1341.
    Paper not yet in RePEc: Add citation now
  67. Zhang, M. and Lin, D. K. (2022). Visualization for interval data. Journal of Computational and Graphical Statistics, 31(4):960–975.
    Paper not yet in RePEc: Add citation now
  68. Zhong, W., Qian, C., Liu, W., Zhu, L., and Li, R. (2023). Feature screening for interval-valued response with application to study association between posted salary and required skills. Journal of the American Statistical Association, 118(542):805–817.

  69. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of American Statistical Association, 101(476):1418–1429. Online Appendix of “Sparse Interval-valued Time Series Modeling with Machine Learning”
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Exact Mixed-Frequency Data Sampling (eMIDAS). (2025). Quinlan, Stephen Snudden.
    In: LCERPA Working Papers.
    RePEc:wlu:lcerpa:jc0157.

    Full description at Econpapers || Download paper

  2. Brazilian Selic Rate Forecasting with Deep Neural Networks. (2025). Moreira, Rodrigo ; Rodrigues, Larissa Ferreira ; Silva, Flvio Oliveira.
    In: Computational Economics.
    RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10597-2.

    Full description at Econpapers || Download paper

  3. Nowcasting Perus GDP with Machine Learning Methods. (2025). Tang, Juan ; Flores Audante, Jairo ; Ruelas-Huanca, Walter ; Gonzaga, Bruno.
    In: IHEID Working Papers.
    RePEc:gii:giihei:heidwp01-2025.

    Full description at Econpapers || Download paper

  4. Information loss from perception alignment. (2025). Dalko, Viktoria ; Ardakani, Omid M ; Shim, Hyeeun.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:97:y:2025:i:c:s1059056024008220.

    Full description at Econpapers || Download paper

  5. Forecasting macroeconomic tail risk in real time: Do textual data add value?. (2025). Prser, Jan ; Admmer, Philipp ; Schssler, Rainer A.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:41:y:2025:i:1:p:307-320.

    Full description at Econpapers || Download paper

  6. Forecast by mixed-frequency dynamic panel model. (2025). Hu, Mingming ; Chen, Yuxiu ; Liu, Han.
    In: Annals of Tourism Research.
    RePEc:eee:anture:v:110:y:2025:i:c:s0160738324001646.

    Full description at Econpapers || Download paper

  7. Enhancing GDP nowcasts with ChatGPT: a novel application of PMI news releases. (2025). de Bondt, Gabe ; Sun, Yiqiao.
    In: Working Paper Series.
    RePEc:ecb:ecbwps:20253063.

    Full description at Econpapers || Download paper

  8. Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables. (2025). Stevanovic, Dalibor ; Marcellino, Massimiliano ; Coulombe, Philippe Goulet.
    In: CIRANO Working Papers.
    RePEc:cir:cirwor:2025s-15.

    Full description at Econpapers || Download paper

  9. Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables. (2025). Stevanovic, Dalibor ; Marcellino, Massimiliano ; Coulombe, Philippe Goulet.
    In: Working Papers.
    RePEc:bbh:wpaper:25-04.

    Full description at Econpapers || Download paper

  10. High-dimensional censored MIDAS logistic regression for corporate survival forecasting. (2025). van Keilegom, Ingrid ; Striaukas, Jonas ; Beyhum, Jad ; Miao, Wei.
    In: Papers.
    RePEc:arx:papers:2502.09740.

    Full description at Econpapers || Download paper

  11. The boosted Hodrick‐Prescott filter is more general than you might think. (2024). Phillips, Peter ; Mei, Ziwei ; Shi, Zhentao.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:39:y:2024:i:7:p:1260-1281.

    Full description at Econpapers || Download paper

  12. Nowcasting Norwegian household consumption with debit card transaction data. (2024). Aastveit, Knut Are ; Fastb, Tuva Marie ; Granziera, Eleonora ; Paulsen, Kenneth Sterhagen ; Torstensen, Kjersti Nss.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:39:y:2024:i:7:p:1220-1244.

    Full description at Econpapers || Download paper

  13. Nowcasting Euro area GDP with news sentiment: A tale of two crises. (2024). Saiz, Lorena ; Ashwin, Julian ; Kalamara, Eleni.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:39:y:2024:i:5:p:887-905.

    Full description at Econpapers || Download paper

  14. Panel data nowcasting: The case of price–earnings ratios. (2024). Babii, Andrii ; Ball, Ryan T ; Striaukas, Jonas ; Ghysels, Eric.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:39:y:2024:i:2:p:292-307.

    Full description at Econpapers || Download paper

  15. Influential assets in Large-Scale Vector AutoRegressive Models. (2024). Trimborn, Simon ; Zhang, Kexin.
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20240080.

    Full description at Econpapers || Download paper

  16. Benchmarking econometric and machine learning methodologies in nowcasting GDP. (2024). Hopp, Daniel.
    In: Empirical Economics.
    RePEc:spr:empeco:v:66:y:2024:i:5:d:10.1007_s00181-023-02515-6.

    Full description at Econpapers || Download paper

  17. Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression*. (2024). Raftapostolos, Aristeidis ; Kapetanios, George ; Chronopoulos, Ilias.
    In: Journal of Financial Econometrics.
    RePEc:oup:jfinec:v:22:y:2024:i:3:p:636-669..

    Full description at Econpapers || Download paper

  18. Reservoir computing for macroeconomic forecasting with mixed-frequency data. (2024). van Huellen, Sophie ; Dellaportas, Petros ; Hirt, Marcel ; Grigoryeva, Lyudmila ; Ortega, Juan-Pablo ; Ballarin, Giovanni.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:40:y:2024:i:3:p:1206-1237.

    Full description at Econpapers || Download paper

  19. Forecasting oil futures returns with news. (2024). Wang, Yudong ; Pan, Zhiyuan ; Huang, Juan ; Zhong, Hao.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003141.

    Full description at Econpapers || Download paper

  20. On LASSO for high dimensional predictive regression. (2024). Mei, Ziwei ; Shi, Zhentao.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:242:y:2024:i:2:s0304407624001556.

    Full description at Econpapers || Download paper

  21. Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany. (2024). Wieland, Elisabeth ; Menz, Jan-Oliver ; Carstensen, Kai ; Schnorrenberger, Richard ; Beck, Gunter W.
    In: Working Paper Series.
    RePEc:ecb:ecbwps:20242930.

    Full description at Econpapers || Download paper

  22. CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting. (2024). Bozhechkova, Alexandra ; Dzhunkeev, Urmat.
    In: Russian Journal of Money and Finance.
    RePEc:bkr:journl:v:83:y:2024:i:3:p:45-69.

    Full description at Econpapers || Download paper

  23. Nowcasting Italian GDP growth: a Factor MIDAS approach. (2024). Silvestrini, Andrea ; Prifti, Orest ; Ceci, Donato.
    In: Temi di discussione (Economic working papers).
    RePEc:bdi:wptemi:td_1446_24.

    Full description at Econpapers || Download paper

  24. Dual Interpretation of Machine Learning Forecasts. (2024). Goulet Coulombe, Philippe ; Goebel, Maximilian ; Klieber, Karin.
    In: Papers.
    RePEc:arx:papers:2412.13076.

    Full description at Econpapers || Download paper

  25. Sparse Interval-valued Time Series Modeling with Machine Learning. (2024). Wang, Shouyang ; Sun, Yuying ; Hong, Yongmiao ; Bao, Haowen.
    In: Papers.
    RePEc:arx:papers:2411.09452.

    Full description at Econpapers || Download paper

  26. Econometric Inference for High Dimensional Predictive Regressions. (2024). Lee, Ji Hyung ; Mei, Ziwei ; Shi, Zhentao ; Gao, Zhan.
    In: Papers.
    RePEc:arx:papers:2409.10030.

    Full description at Econpapers || Download paper

  27. Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting. (2024). Mogliani, Matteo ; Simoni, Anna.
    In: Papers.
    RePEc:arx:papers:2404.02671.

    Full description at Econpapers || Download paper

  28. Data-Driven Tuning Parameter Selection for High-Dimensional Vector Autoregressions. (2024). Kock, Anders ; Pedersen, Rasmus Sondergaard ; Sorensen, Jesper Riis-Vestergaard.
    In: Papers.
    RePEc:arx:papers:2403.06657.

    Full description at Econpapers || Download paper

  29. Expected Shortfall LASSO. (2024). Barendse, Sander.
    In: Papers.
    RePEc:arx:papers:2307.01033.

    Full description at Econpapers || Download paper

  30. Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions. (2024). Wilms, Ines ; Hecq, Alain ; Ternes, Marie.
    In: Papers.
    RePEc:arx:papers:2301.10592.

    Full description at Econpapers || Download paper

  31. Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data. (2024). van Huellen, Sophie ; Dellaportas, Petros ; Hirt, Marcel ; Grigoryeva, Lyudmila ; Ortega, Juan-Pablo ; Ballarin, Giovanni.
    In: Papers.
    RePEc:arx:papers:2211.00363.

    Full description at Econpapers || Download paper

  32. Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany. (2023). Wieland, Elisabeth ; Schnorrenberger, Richard ; Menz, Jan-Oliver ; Carstensen, Kai ; Beck, Guenter.
    In: Discussion Papers.
    RePEc:zbw:bubdps:282982.

    Full description at Econpapers || Download paper

  33. Testing big data in a big crisis: Nowcasting under Covid-19. (2023). Tiozzo Pezzoli, Luca ; Ratto, Marco ; Pericoli, Filippo Maria ; onorante, luca ; Barbaglia, Luca ; Frattarolo, Lorenzo.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:4:p:1548-1563.

    Full description at Econpapers || Download paper

  34. Machine learning panel data regressions with heavy-tailed dependent data: Theory and application. (2023). Babii, Andrii ; Ball, Ryan T ; Striaukas, Jonas ; Ghysels, Eric.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:237:y:2023:i:2:s0304407622001282.

    Full description at Econpapers || Download paper

  35. Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity. (2023). Potjagailo, Galina ; Kohns, David.
    In: Bank of England working papers.
    RePEc:boe:boeewp:1025.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-06 08:19:34 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.