Babii, A., Ghysels, E., and Striaukas, J. (2022). Machine learning time series regressions with an application to nowcasting. Journal of Business & Economic Statistics, 40(3):1094â1106.
- Benhamou, F. and Granvilliers, L. (2006). Continuous and interval constraints. Foundations of Artificial Intelligence, 2:571â603.
Paper not yet in RePEc: Add citation now
Bia, M., Huber, M., and LaffeÌrs, L. (2024). Double machine learning for sample selection models. Journal of Business & Economic Statistics, 42(3):958â969.
- Billard, L. and Diday, E. (2000). Regression analysis for interval-valued data. In Data Analysis, Classification, and Related Methods, pages 369â374. Springer Berlin Heidelberg, Berlin, Heidelberg.
Paper not yet in RePEc: Add citation now
- Billard, L. and Diday, E. (2002). Symbolic regression analysis. In Classification, Clustering, and Data Analysis, pages 281â288. Springer.
Paper not yet in RePEc: Add citation now
- Bock, H.-H. and Diday, E. (1999). Analysis of symbolic data: exploratory methods for extracting statistical information from complex data. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Bock, H.-H. and Diday, E. (2000). Symbolic objects. In Analysis of Symbolic Data, pages 54â77. Springer.
Paper not yet in RePEc: Add citation now
- Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37(4):373â384.
Paper not yet in RePEc: Add citation now
- Brito, P. (2007). Modelling and analysing interval data. In Advances in Data Analysis, pages 197â208. Springer Berlin Heidelberg, Berlin, Heidelberg.
Paper not yet in RePEc: Add citation now
Buansing, T. T., Golan, A., and Ullah, A. (2020). An information-theoretic approach for forecasting interval-valued S&P 500 daily returns. International Journal of Forecasting, 36(3):800â813.
Caner, M. and Eliaz, K. (2024). Should humans lie to machines? the incentive compatibility of lasso and glm structured sparsity estimators. Journal of Business & Economic Statistics, pages 1â10.
Chai, J., Xing, L.-M., Zhou, X.-Y., Zhang, Z. G., and Li, J.-X. (2018). Forecasting the WTI crude oil price by a hybrid-refined method. Energy Economics, 71:114â127.
Corielli, F. and Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8):2215â2233.
Dias, S. and Brito, P. (2017). Off the beaten track: A new linear model for interval data. European Journal of Operational Research, 258(3):1118â1130.
- Dimitrova, N., Markov, S., and Popova, E. (1992). Extended interval arithmetics: new results and applications. Computer arithmetic and enclosure methods, pages 225â232.
Paper not yet in RePEc: Add citation now
- Efron, B., Hastie, T., and Tibshirani, J. R. (2004). Least angle regression. Annals of Statistics, 32(2):407â451.
Paper not yet in RePEc: Add citation now
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Publications of American Statal Association, 96(456):1348â1360.
- Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32(3):928â961.
Paper not yet in RePEc: Add citation now
Gao, J., Peng, B., and Yan, Y. (2024). Robust inference for high-dimensional panel data models.
Giove, S., Funari, S., and Nardelli, C. (2006). An interval portfolio selection problem based on regret function. European Journal of Operational Research, 170(1):253â264.
Golan, A. and Ullah, A. (2017). Interval estimation: An information theoretic approach. Econometric Reviews, 36(6-9):781â795.
GonzaÌlez-Rivera, G. and Lin, W. (2013). Constrained regression for interval-valued data. Journal of Business & Economic Statistics, 31(4):473â490.
Gu, S., Kelly, B., and Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial Studies, 33(5):2223â2273.
Guo, X., Li, R., Liu, J., and Zeng, M. (2023). Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic. Journal of Econometrics, 235(1):166â179.
- Han, A., Hong, Y., Sun, Y., and Wang, S. (2020). Autoregressive conditional models for intervalvalued time series data. In Manuscript, Department of Economics, Cornell University, page 27.
Paper not yet in RePEc: Add citation now
- Han, A., Hong, Y., Wang, S., and Yun, X. (2016). A vector autoregressive moving average model for interval-valued time series data. In Essays in Honor of Aman Ullah. Emerald Group Publishing Limited.
Paper not yet in RePEc: Add citation now
He, A. W., Kwok, J. T., and Wan, A. T. (2010). An empirical model of daily highs and lows of west texas intermediate crude oil prices. Energy Economics, 32(6):1499â1506.
He, Y., Han, A., Hong, Y., Sun, Y., and Wang, S. (2021). Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models. Econometric Reviews, 40(6):584â 606.
He, Y., Kong, X., Yu, L., and Zhang, X. (2022). Large-dimensional factor analysis without moment constraints. Journal of Business & Economic Statistics, 40(1):302â312.
- Huang, J., Horowitz, J. L., and Ma, S. (2008a). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Annals of Statistics, 36(2):587 â 613.
Paper not yet in RePEc: Add citation now
- Huang, J., Ma, S., and Zhang, C.-H. (2008b). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, pages 1603â1618.
Paper not yet in RePEc: Add citation now
- Hukuhara, M. (1967). Integration des applications mesurables dont la valeur est un compact convexe, funkc. ekvacioj. 205-223. Funkcialaj Ekvacioj, 10.
Paper not yet in RePEc: Add citation now
- Kaucher, E. (1980). Interval Analysis in the Extended Interval Space IR, pages 33â49. Springer Vienna, Vienna.
Paper not yet in RePEc: Add citation now
- KoÌrner, R. and NaÌther, W. (2002). On the variance of random fuzzy variables, pages 25â42. Physica-Verlag HD, Heidelberg.
Paper not yet in RePEc: Add citation now
Koop, G. and Korobilis, D. (2023). Bayesian dynamic variable selection in high dimensions. International Economic Review, 64(3):1047â1074.
Lin, W. and GonzaÌlez-Rivera, G. (2016). Interval-valued time series models: Estimation based on order statistics exploring the agriculture marketing service data. Computational Statistics & Data Analysis, 100:694â711.
Lin, W. and GonzaÌlez-Rivera, G. (2019). Extreme returns and intensity of trading. Journal of Applied Econometrics, 34(7):1121â1140.
- Maciel, L., Ballini, R., and Gomide, F. (2023). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 35(10):7149â7159.
Paper not yet in RePEc: Add citation now
- Maciel, L., Vieira, R., Porto, A., Gomide, F., and Ballini, R. (2017). Evolving participatory learning fuzzy modeling for financial interval time series forecasting. In 2017 Evolving and Adaptive Intelligent Systems (EAIS), pages 1â8. IEEE.
Paper not yet in RePEc: Add citation now
Meier, L., Van De Geer, S., and BuÌhlmann, P. (2008). The group LASSO for logistic regression. Journal of Royal Statistical Society: Series B (Statistical Methodology), 70(1):53â71.
Naser, H. (2016). Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach. Energy Economics, 56:75â87.
- Neto, E. d. A. L. and de Carvalho, F. d. A. (2008). Centre and range method for fitting a linear regression model to symbolic interval data. Computational Statistics & Data Analysis, 52(3):1500â 1515.
Paper not yet in RePEc: Add citation now
- Neto, E. d. A. L. and de Carvalho, F. d. A. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics & Data Analysis, 54(2):333â347.
Paper not yet in RePEc: Add citation now
- Premanode, B. and Toumazou, C. (2013). Improving prediction of exchange rates using differential EMD. Expert Systems with Applications, 40(1):377â384.
Paper not yet in RePEc: Add citation now
- Rodrigues, P. M. M. and Salish, N. (2015). Modeling and forecasting interval time series with threshold models. Advances in Data Analysis and Classification, 9(1):41â57.
Paper not yet in RePEc: Add citation now
- Sahu, B., Bhurjee, A. K., and Kumar, P. (2024). Efficient solutions for vector optimization problem on an extended interval vector space and its application to portfolio optimization. Expert Systems with Applications, 249:123653.
Paper not yet in RePEc: Add citation now
- Shu, L., Shi, F., and Tian, G. (2020). High-dimensional index tracking based on the adaptive elastic net. Quantitative Finance, 20(9):1513â1530.
Paper not yet in RePEc: Add citation now
Strub, O. and Baumann, P. (2018). Optimal construction and rebalancing of index-tracking portfolios. European Journal of Operational Research, 264(1):370â387.
Sun, Y., Bao, Q., Zheng, J., and Wang, S. (2020). Assessing the price dynamics of onshore and offshore rmb markets: An its model approach. China Economic Review, 62:101476.
Sun, Y., Han, A., Hong, Y., and Wang, S. (2018). Threshold autoregressive models for intervalvalued time series data. Journal of Econometrics, 206(2):414â446.
- Sun, Y., Zhang, X., Wan, A. T., and Wang, S. (2021). Model averaging for interval-valued data. European Journal of Operational Research.
Paper not yet in RePEc: Add citation now
- Tibshirani and Ryan, J. (2013). The lasso problem and uniqueness. Electronic Journal of Stats, 7(1):1456â1490.
Paper not yet in RePEc: Add citation now
- Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of Royal Statistical Society: Series B (Methodological), 58(1):267â288.
Paper not yet in RePEc: Add citation now
- Utkin, L. V. (2019). An imprecise extension of svm-based machine learning models. Neurocomputing, 331:18â32.
Paper not yet in RePEc: Add citation now
- Van Der Vaart, A. W. and Wellner, J. A. (1997). Weak convergence and empirical processes: with applications to statistics. Springer New York.
Paper not yet in RePEc: Add citation now
- Wang, H., Guan, R., and Wu, J. (2012a). Cipca: Complete-information-based principal component analysis for interval-valued data. Neurocomputing, 86:158â169.
Paper not yet in RePEc: Add citation now
- Wang, H., Guan, R., and Wu, J. (2012b). Linear regression of interval-valued data based on complete information in hypercubes. Journal of Systems Science and Systems Engineering, 21(4):422â 442.
Paper not yet in RePEc: Add citation now
Wang, X., Zhang, Z., and Li, S. (2016a). Set-valued and interval-valued stationary time series. Journal of Multivariate Analysis, 145:208â223.
Wang, Y., Wu, C., and Yang, L. (2016b). Forecasting crude oil market volatility: A markov switching multifractal volatility approach. International Journal of Forecasting, 32(1):1â9.
Wei, Y., Liu, J., Lai, X., and Hu, Y. (2017). Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics, 68:141â150.
Wu, D., Dai, X., Zhao, R., Cao, Y., and Wang, Q. (2023). Pass-through from temperature intervals to chinaâs commodity futuresâ interval-valued returns: Evidence from the varying-coefficient its model. Finance Research Letters, 58:104289.
Wu, L., Yang, Y., and Liu, H. (2014). Nonnegative-LASSO and application in index tracking. Computational Statistics & Data Analysis, 70:116â126.
- Yang, K., Zhang, G., and Wang, D. (2024). Statistical inferences for a class of logistic smooth transition interval autoregressive models. Available at SSRN 4721156.
Paper not yet in RePEc: Add citation now
Yang, W., Han, A., Hong, Y., and Wang, S. (2016). Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling. Quantitative Finance, 16(12):1917â1928.
- Yang, Z., Lin, D. K., and Zhang, A. (2019). Interval-valued data prediction via regularized artificial neural network. Neurocomputing, 331:336â345.
Paper not yet in RePEc: Add citation now
- Zhang, D., Li, Q., Mugera, A. W., and Ling, L. (2020). A hybrid model considering cointegration for interval-valued pork price forecasting in china. Journal of Forecasting, 39(8):1324â1341.
Paper not yet in RePEc: Add citation now
- Zhang, M. and Lin, D. K. (2022). Visualization for interval data. Journal of Computational and Graphical Statistics, 31(4):960â975.
Paper not yet in RePEc: Add citation now
Zhong, W., Qian, C., Liu, W., Zhu, L., and Li, R. (2023). Feature screening for interval-valued response with application to study association between posted salary and required skills. Journal of the American Statistical Association, 118(542):805â817.
- Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of American Statistical Association, 101(476):1418â1429. Online Appendix of âSparse Interval-valued Time Series Modeling with Machine Learningâ
Paper not yet in RePEc: Add citation now