- (2019). Fault detection in wireless sensor networks through the random forest classifier.
Paper not yet in RePEc: Add citation now
Abdulla Almahdi, Mamlook, A., Nishantha Bandara, Ali Saeed Almuflih, Nasayreh, A., Hasan Gharaibeh, Fahad Alasim, Abeer Aljohani, & Jamal, A. (2023). Boosting Ensemble Learning for Freeway Crash Classification under Varying Traffic Conditions: A Hyperparameter Optimization Approach. Sustainability, 15(22), 15896–15896. https://doi.org/10.3390/su152215896 Abonazel, M. R., & Ibrahim, M. G. (2018). On estimation methods for binary logistic regression model with missing values. International Journal of Mathematics and Computational Science, 4(3), 79-85.
- Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities and Society, 49, 101608.
Paper not yet in RePEc: Add citation now
- Dewi, C., Tsai, B.-J., & Chen, R.-C. (2022). Shapley Additive Explanations for Text Classification and Sentiment Analysis of Internet Movie Database (pp. 69–80). https://doi.org/10.1007/978-981-19-8234-7_6 Elias, F., Reza, M. S., Mahmud, M. Z., Islam, S., & Alve, S. R. (2025, September 25). Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis. Arxiv.org. https://arxiv.org/html/2505.00410v2 Fatima, S., Hussain, A., Amir, S., Syed, H., Ahmed, S., Muhammad, H., & Aslam. (2023). XGBoost and Random Forest Algorithms: An In- Depth Analysis (pp. 26–31). Pakistan Journal of Scientific Research, PJOSR.
Paper not yet in RePEc: Add citation now
- Ferreira, D., Ferreira, S. S., Nunes, C., & Mexia, J. T. (2017). Estimation in mixed models through three step minimizations. Communications in Statistics - Simulation and Computation, 46(2), 1156–1166. https://doi.org/10.1080/03610918.2014.992544 International Journal of Technology and Systems ISSN 2518-881X (Online) Vol.10, Issue 3, No.1, pp 1 – 19, 2025 www.iprjb.org Fransen, K., Versigghel, J., Guzman Vargas, D., Semanjski, I., & Gautama, S. (2023).
Paper not yet in RePEc: Add citation now
- https://doi.org/10.1109/ISSNIP.2015.7106902 International Journal of Technology and Systems ISSN 2518-881X (Online) Vol.10, Issue 3, No.1, pp 1 – 19, 2025 www.iprjb.org Yuri. (2023). A Strategy of Smart Mobility Implementation: Characteristics, Factors, and Citizen Expectations (Doctoral dissertation, Seoul National University).
Paper not yet in RePEc: Add citation now
Inam, S., Mahmood, A., Khatoon, S., Alshamari, M., & Nawaz, N. (2022). Multisource data integration and comparative analysis of machine learning models for on-street parking prediction. Sustainability, 14(12), 7317.
Jiao, X., Pretis, F., & Schwarz, M. (2024). Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change. Journal of Econometrics, 239(1), 105547.
- Judkins, D. R., & Porter, K. E. (2016). Robustness of ordinary least squares in randomized clinical trials. Statistics in Medicine, 35(11), 1763-1773.
Paper not yet in RePEc: Add citation now
Lee, C., & Kim, H. (2022). Machine learning-based predictive modeling of depression in hypertensive populations. PLOS ONE, 17(7), e0272330. https://doi.org/10.1371/journal.pone.0272330 Loh, P.-L. (2024). A Theoretical Review of Modern Robust Statistics. Annual Review of Statistics and Its Application, 12, 477–496. https://doi.org/10.1146/annurev-statistics112723 -034446 Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
- Michaelides, P. G. (2024). Ordinary Least Squares. Springer Nature, 29–44. https://doi.org/10.1007/978-3-031-76140-9_3 International Journal of Technology and Systems ISSN 2518-881X (Online) Vol.10, Issue 3, No.1, pp 1 – 19, 2025 www.iprjb.org Micko, K., Papcun, P., & Zolotova, I. (2023). Review of IoT Sensor Systems Used for Monitoring the Road Infrastructure. Sensors (14248220), 23(9), 4469. https://doi.org/10.3390/s23094469 Musa, A. A., Malami, S. I., Alanazi, F., Ounaies, W., Alshammari, M., & Haruna, S. I. (2023). Sustainable traffic management for smart cities using internet-of-things-oriented intelligent transportation systems (ITS): challenges and recommendations. Sustainability, 15(13), 9859.
Paper not yet in RePEc: Add citation now
Naidu, G., Zuva, T., & Sibanda, E. M. (2023). A Review of Evaluation Metrics in Machine Learning Algorithms (pp. 15–25). https://doi.org/10.1007/978-3-031-35314-7_2 Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E.
- Patchipala, S. (2023). Tackling data and model drift in AI: Strategies for maintaining accuracy during ML model inference. International Journal of Science and Research Archive, 10(2), 1198-1209.
Paper not yet in RePEc: Add citation now
- Piccialli, F., Giampaolo, F., Prezioso, E., Crisci, D., & Cuomo, S. (2021). Predictive Analytics for Smart Parking: A Deep Learning Approach in Forecasting of IoT Data. ACM Transactions on Internet Technology, 21(3), 1–21. https://doi.org/10.1145/3412842 Rasheed, B. A., Adnan, R., Saffari, S. E., & dano Pati, K. (2014). Robust weighted least squares estimation of regression parameter in the presence of outliers and heteroscedastic errors. Jurnal Teknologi (Sciences & Engineering), 71(1).
Paper not yet in RePEc: Add citation now
- Rhayem, A., Mhiri, M. B. A., & Gargouri, F. (2020). Semantic web technologies for the internet of things: Systematic literature review. Internet of Things, 11, 100206.
Paper not yet in RePEc: Add citation now
- Rokem, A., & Kay, K. (2020). Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. GigaScience, 9(12), giaa133.
Paper not yet in RePEc: Add citation now
- Shahrier, M., Hasnat, A., Al‐Mahmud, J., Huq, A. S., Ahmed, S., & Haque, M. K. (2024). Towards intelligent transportation system: A comprehensive review of electronic toll collection systems. IET Intelligent Transport Systems, 18(6), 965-983.
Paper not yet in RePEc: Add citation now
- Siedlecki, S. L. (2020). Understanding Descriptive Research Designs and Methods. Clinical Nurse Specialist, 34(1), 8–12. https://doi.org/10.1097/NUR.0000000000000493 Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41, 647665.
Paper not yet in RePEc: Add citation now
- Sustainable mobility strategies deconstructed: a taxonomy of urban vehicle access regulations. European Transport Research Review, 15(1), 3. https://doi.org/10.1186/s12544-023-00576-3 Gao, H., Yun, Q., Ran, R., & Ma, J. (2021). Smartphone-based parking guidance algorithm and implementation. Journal of Intelligent Transportation Systems, 25(4), 412-422.
Paper not yet in RePEc: Add citation now
- Wu, P., Zhang, Z., Peng, X., & Wang, R. (2024). Deep learning solutions for smart city challenges in urban development. Scientific Reports, 14(1), 5176.
Paper not yet in RePEc: Add citation now
- Xiao, X., Peng, Z., Lin, Y., Jin, Z., Shao, W., Chen, R., ... & Mao, G. (2023). Parking prediction in smart cities: A survey. IEEE Transactions on Intelligent Transportation Systems, 24(10), 10302-10326.
Paper not yet in RePEc: Add citation now
- Yanxu Zheng, Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensorenabled car parks in smart cities. 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 1–6.
Paper not yet in RePEc: Add citation now
Zhang, W., & Wang, K. (2020). Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta. Land Use Policy, 91, 103963.
- Zhu, Y., Liu, J., Gu, S., & Wang, H. (2020). Single-Index ESL Robust Regression and Application. 2020 International Conference on Big Data and Social Sciences (ICBDSS), 59–64. https://doi.org/10.1109/ICBDSS51270.2020.00021
Paper not yet in RePEc: Add citation now