Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297.
Baldos, U., Fuglie, K., & Hertel, T. W. (2020). The research cost of adapting agriculture to climate change: A global analysis to 2050. Agricultural Economics, 51(2), 207–220.
Ball, E. V., Wang, S. L., Nehring, R., & Mosheim, R. (2016). Productivity and economic growth in US agriculture: A new look. Applied Economic Perspectives and Policy, 38(1), 30–49.
- Baltagi, B. (2008). Econometric analysis of panel data. West Sussex, United Kingdom: John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Barrios, S., Bertinelli, L., & Strobl, E. (2010). Trends in rainfall and economic growth in Africa: A neglected cause of the African growth tragedy. The Review of Economics and Statistics, 92(2), 350–366.
Bharati, P., & Fulginiti, L. (2007). Institutions and agricultural productivity in Mercosur. in E. C. Teixeira, E.C. and Braga, M.J. (eds.), Institutions and economic development. Os Editores, Vicosa, 139–169.
Blanc, E., & Schlenker, W. (2017). The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy, 11(2), 258–279.
- Bravo‐Ureta, B. E., Jara‐Rojas, R., Lachaud, M., Moreira, V. H., Scheierling, S. M., & Treguer, D. O. (2016). Farm‐level technical efficiency and water: A meta‐analysis of the frontier function literature. Paper presented at the International Association of Agricultural Economists Inter‐Conference Symposium, Almaty Kazakhstan.
Paper not yet in RePEc: Add citation now
Bravo‐Ureta, B. E., Moreira, V. H., Troncoso, J. L., & Wall, A. (2020). Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers. Agricultural Economics, 51(6), 811–824.
Chambers, R. G., & Pieralli, S. (2020). The sources of measured US agricultural productivity growth: Weather, technological change, and adaptation. American Journal of Agricultural Economics, 102(4), 1198–1226.
Chen, S., Chen, X., & Xu, J. (2013). Impacts of climate change on corn and soybean yields in China. 2013 AAEA & CAES Joint Annual Meeting, Washington, DC, Agricultural and Applied Economics Association, 149739. http://ageconsearch.umn.edu/bitstream/149739/2/AAEA2013.pdf.
Clemente, J., Montañes, A., & Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean. Economics Letters, 59(2), 175–182.
- Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal‐trend decomposition. Journal of Official Statistics, 6(1), 3–73.
Paper not yet in RePEc: Add citation now
Coelli, T. J., & Rao, D. P. (2005). Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agricultural Economics, 32(1), 115–134.
Corbo, V., & Schmidt‐Hebbel, K. (2013). The international crisis and Latin America. Monetaria, 35(1), 37–62.
- Craigmile, P. F., & Guttorp, P. (2011). Space‐time modelling of trends in temperature series. Journal of Time Series Analysis, 32(4), 378–395.
Paper not yet in RePEc: Add citation now
Dell, M., Jones, B. F., & Olken, B. A. (2014). What do we learn from the weather? The new climate‐economy literature. Journal of Economic Literature, 52(3), 740–98.
- ECLAC. (2010). The economics of climate change in Latin America and the Caribbean: Paradoxes and challenges. Santiago, Chile: ECLAC.
Paper not yet in RePEc: Add citation now
- Economic Commission for Latin America and the Caribbean (ECLAC). (2014). Economics of climate change in Latin America and the Caribbean. Summary 2010. Santiago, Chile: ECLAC.
Paper not yet in RePEc: Add citation now
Fuglie, K. (2018). R&D capital, R&D spillovers, and productivity growth in world agriculture. Applied Economic Perspectives & Policy, 40(3), 421–444.
- Fuglie, K. O., Wang, S. L., & Ball, V. E. (2012). Productivity growth in agriculture: An international perspective. CAB International.
Paper not yet in RePEc: Add citation now
Greene, W. (2005). Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics, 126, 269–303.
- Greene, W. H. (2008). Econometric analysis. Englewood Cliffs, NJ: Prentice Hall.
Paper not yet in RePEc: Add citation now
Havlík, P., Valin, H., Gusti, M., Schmid, E., Leclère, D., Forsell, N., Herrero, M., Mosnier, A., Cantele, M. & Obersteiner, M. (2015). Climate change impacts and mitigation in the developing world: an integrated assessment of the agriculture and forestry sectors. The World Bank Group, Policy Research Working Paper 7477.
Huffman, W. E., Jin, Y., & Xu, Z. (2018). The economic impacts of technology and climate change: new evidence from US corn yields. Agricultural Economics, 49(4), 463–479.
- IPCC. (2014). Climate change 2014. Impacts, adaptation and vulnerability. Working group II contribution to the IPCC fifth assessment report. Cambridge, UK: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson‐Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
Paper not yet in RePEc: Add citation now
Jondrow, J., Knox Lovell, C. A., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19(2), 233–238.
Jones, B. F., & Olken, B. A. (2010). Climate shocks and exports. The American Economic Review, 100(2), 454–59.
Karagiannis, G., & Kellermann, M. (2019). Stochastic frontier models with correlated effects. Journal of Productivity Analysis, 51(2–3), 175–187.
- Kumbhakar, S. C., & Lovell, C. K. (2003). Stochastic frontier analysis. Cambridge UK: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Lachaud, M. A., & Bravo‐Ureta, B. E. (2021). Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence. Australian Journal of Agricultural and Resource Economics, 65(1), 143–170.
Lachaud, M. A., Bravo‐Ureta, B. E., & Ludena, C. E. (2017). Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects. Climatic Change, 143(3–4), 445–460.
- Liang, X. Z., Wu, Y., Chambers, R. G., Schmoldt, D. L., Gao, W., Liu, C., Liu, Y., Sun, C., & Kennedy, J. A. (2017). Determining climate effects on US total agricultural productivity. Proceedings of the National Academy of Sciences, 114(12), E2285–E2292.
Paper not yet in RePEc: Add citation now
- Ludena, C. E., Hertel, T. W., Preckel, P. V., Foster, K., & Nin, A. (2007). Productivity growth and convergence in crop, ruminant, and nonruminant production: measurement and forecasts. Agricultural Economics, 37(1), 1–17.
Paper not yet in RePEc: Add citation now
- Mendelsohn, R., Morrison, W., Schlesinger, M. E., & Andronova, N. G. (2000). Country‐specific market impacts of climate change. Climatic Change, 45(3–4), 553–569.
Paper not yet in RePEc: Add citation now
- Meng, T., R. Carew, W. J. Florkowski, & A. M. Klepacka. (2017). Analyzing temperature and precipitation influences on yield distributions of canola and spring wheat in Saskatchewan. Journal of Applied Meteorology and Climatology, 56(4), 897–913.
Paper not yet in RePEc: Add citation now
- Nguyen, C. T., & Scrimgeour, F. (2021). Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis. Agricultural Economics, 1–15. https://doi.org/10.1111/agec.12677.
Paper not yet in RePEc: Add citation now
Nin‐Pratt, A., Falconi, C., Ludena, C. E., & Martel, P. (2015). Productivity, and the performance of agriculture in Latin America and the Caribbean: from the lost decade to the commodity boom. Inter‐American Development Bank, Working Paper No. 608.
Njuki, E., Bravo‐Ureta, B. E., & O'Donnell, C. J. (2019). Decomposing agricultural productivity growth using a random‐parameters stochastic production frontier. Empirical Economics, 57(3), 1–22.
- O'Donnell, C. J. (2016). Using information about technologies, markets and firm behaviour to decompose a proper productivity index. Journal of Econometrics, 190(2), 328–340.
Paper not yet in RePEc: Add citation now
- O'Donnell, C. J. (2018). Productivity and efficiency analysis: An Economic approach to measuring and explaining managerial performance. Gateway East, Singapore: Springer Nature.
Paper not yet in RePEc: Add citation now
- OECD‐FAO. (2019). Agricultural Outlook 2019–2028. Rome: Food and Agriculture Organization of the United Nations. .
Paper not yet in RePEc: Add citation now
- Pardey, P. G., Andrade, R. S., Hurley, T. M., Rao, X., & Liebenberg, F. G. (2016). Returns to food and agricultural R&D investments in Sub‐Saharan Africa, 1975–2014. Food Policy, 65(1), 1–8.
Paper not yet in RePEc: Add citation now
- Rahman, S. (2011). Resource use efficiency under self‐selectivity: The case of Bangladeshi rice producers. Australian Journal of Agricultural and Resource Economics, 55(2), 273–290.
Paper not yet in RePEc: Add citation now
Rossi, B., & Sekhposyan, T. (2016). Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts. Journal of Applied Econometrics, 31(3), 507–532.
- StataCorp (2017). Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.
Paper not yet in RePEc: Add citation now
Stern, N. (2013). The structure of economic modeling of the potential impacts of climate change: Grafting gross underestimation of risk onto already narrow science models. Journal of Economic Literature, 51(3), 838–859.
Tol, R. S. (2018). The economic impacts of climate change. Review of Environmental Economics and Policy, 12(1), 4–25.
- University of East Anglia Climatic Research Unit (UEACRU). (2014). CRU TS3.21: Climatic Research Unit (CRU) Time‐Series (TS) Version 3.21 of high‐resolution gridded data of month‐by‐month variation in climate (Jan. 1901–Dec. 2014). Data Centre. https://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d, accessed 20 May 2019).
Paper not yet in RePEc: Add citation now
- Van Meijl, H., Havlik, H., Lotze‐Campen, P., Stehfest, H., Witzke, E., Pérez Domínguez, I. P., Leon Bodrisky, B., van Dijk, M., Doelman, J., Fellmann, T., Humpenöder, F., Koopman, J. F. L., Müller, C., Popp, A., Tabeau, A., Valin, H., & van Zeist, W.‐J. (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), 1–20.
Paper not yet in RePEc: Add citation now
- Van Vuuren, D. P., Riahi, K., Moss, R., Edmonds, J., Thomson, A., Nakicenovic, N., Kram, T., Berkhout, F., Swart, R., Janetos, A., Rose, S. K., & Arnell, N. (2012). A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1), 21–35.
Paper not yet in RePEc: Add citation now
Vergara, W., Rios, A. R., Galindo, L. M., Gutman, P., Isbell, P., Suding, P. H., & Pachauri, R. (2013). The climate and development challenge for Latin America and the Caribbean: Options for climate‐resilient, low‐carbon development. Inter‐American Development Bank, ISBN: 978‐1‐59782‐165‐0.
- World Bank. (2012). Climate change: Is Latin America prepared for temperatures to rise 4 degrees? http://www.worldbank.org/en/news/feature/2012/11/19/climate-change-4-degrees-latin-america-preparation.
Paper not yet in RePEc: Add citation now
Yaffee, R. A. (2010). Forecast evaluation with Stata. United Kingdom Stata users group conference. London School of Hygiene and Tropical Medicine. https://www.stata.com/meeting/uk10/UKSUG10.Yaffee.pdf.
- Yang, S., & Shumway, C. R. (2015). Dynamic adjustment in US agriculture under climate change. American Journal of Agricultural Economics, 98(3), 910–924.
Paper not yet in RePEc: Add citation now
- Zellner, A., Kmenta, J., & Dreze, J. (1966). Specification and estimation of Cobb‐Douglas production function models. Econometrica, 34(4), 784–795.
Paper not yet in RePEc: Add citation now