create a website

A dynamic framework to align company climate reporting and action with global climate targets. (2024). Heidrich, Oliver ; Elnahass, Marwa ; Amezaga, Jaime ; Browne, Anthony ; Christy, Anna.
In: Business Strategy and the Environment.
RePEc:bla:bstrat:v:33:y:2024:i:4:p:3103-3128.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 136

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abelha, M., Fernandes, S., Mesquita, D., Seabra, F., & Ferreira‐Oliveira, A. T. (2020). Graduate employability and competence development in higher education—A systematic literature review using PRISMA. Sustainability, 12(15), 5900. https://doi.org/10.3390/su12155900.
    Paper not yet in RePEc: Add citation now
  2. Acquaye, A. A., & Duffy, A. P. (2010). Input–output analysis of Irish construction sector greenhouse gas emissions. Building and Environment, 45(3), 784–791. https://doi.org/10.1016/j.buildenv.2009.08.022.
    Paper not yet in RePEc: Add citation now
  3. Adams, P. W. R., Mezzullo, W. G., & McManus, M. C. (2015). Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities. Energy Policy, 87, 95–109. https://doi.org/10.1016/j.enpol.2015.08.031.

  4. Agez, M., Wood, R., Margni, M., Strømman, A. H., Samson, R., & Majeau‐Bettez, G. (2020). Hybridization of complete PLCA and MRIO databases for a comprehensive product system coverage. Journal of Industrial Ecology, 24(4), 774‐790. https://doi.org/10.1111/jiec.12979.

  5. Ala‐Mantila, S., Heinonen, J., & Junnila, S. (2013). Greenhouse gas implications of urban sprawl in the Helsinki metropolitan area. Sustainability, 5(10), 4461–4478. https://doi.org/10.3390/su5104461.

  6. Albarrak, M. S., Elnahass, M., & Salama, A. (2019). The effect of carbon dissemination on cost of equity. Business Strategy and the Environment, 28(6), 1179–1198. https://doi.org/10.1002/bse.2310.

  7. Alsaifi, K., Elnahass, M., & Salama, A. (2020a). Carbon disclosure and financial performance: UK environmental policy. Business Strategy and the Environment, 29(2), 711–726. https://doi.org/10.1002/bse.2426.
    Paper not yet in RePEc: Add citation now
  8. Alsaifi, K., Elnahass, M., & Salama, A. (2020b). Market responses to firms' voluntary carbon disclosure: Empirical evidence from the United Kingdom. Journal of Cleaner Production, 262, 121377. https://doi.org/10.1016/j.jclepro.2020.121377.
    Paper not yet in RePEc: Add citation now
  9. Alsaifi, K., Elnahass, M., Al‐Awadhi, A. M., & Salama, A. (2022). Carbon disclosure and firm risk: Evidence from the UK corporate responses to climate change. Eurasian Business Review, 12(3), 505–526. https://doi.org/10.1007/s40821-021-00190-0.

  10. Andrade, J. C. S., Dameno, A., Pérez, J., de Andrés Almeida, J. M., & Lumbreras, J. (2018). Implementing city‐level carbon accounting: A comparison between Madrid and London. Journal of Cleaner Production, 172, 795–804. https://doi.org/10.1016/j.jclepro.2017.10.163.
    Paper not yet in RePEc: Add citation now
  11. Andrew, R., Peters, G. P., & Lennox, J. (2009). Approximation and regional aggregation in multi‐regional input–output analysis for national carbon footprint accounting. Economic Systems Research, 21(3), 311–335. https://doi.org/10.1080/09535310903541751.
    Paper not yet in RePEc: Add citation now
  12. Asdrubali, F., Presciutti, A., & Scrucca, F. (2013). Development of a greenhouse gas accounting GIS‐based tool to support local policy making—Application to an Italian municipality. Energy Policy, 61, 587–594. https://doi.org/10.1016/j.enpol.2013.05.116.
    Paper not yet in RePEc: Add citation now
  13. Baars, J., Rajaeifar, M. A., & Heidrich, O. (2022). Quo vadis MFA? Integrated material flow analysis to support material efficiency. Journal of Industrial Ecology, 26(4), 1487‐1503. https://doi.org/10.1111/jiec.13288.

  14. Banhardt, C., & Hartenstein, F. (2016). A makeshift approach to carbon accounting in Egyptian towns. Procedia Environmental Sciences, 34, 152–163. https://doi.org/10.1016/j.proenv.2016.04.015.
    Paper not yet in RePEc: Add citation now
  15. Bendig, D., Wagner, A., & Lau, K. (2022). Does it pay to be science‐based green? The impact of science‐based emission‐reduction targets on corporate financial performance. Journal of Industrial Ecology, 27, 125–140. https://doi.org/10.1111/jiec.13341.
    Paper not yet in RePEc: Add citation now
  16. Bingler, J. A., Kraus, M., Leippold, M., & Webersinke, N. (2022). Cheap talk and cherry‐picking: What ClimateBert has to say on corporate climate risk disclosures. Finance Research Letters, 47(Part B), 102776. https://doi.org/10.1016/j.frl.2022.102776.
    Paper not yet in RePEc: Add citation now
  17. Brander, M. (2016). Transposing lessons between different forms of consequential greenhouse gas accounting: Lessons for consequential life cycle assessment, project‐level accounting, and policy‐level accounting. Journal of Cleaner Production, 112, 4247–4256. https://doi.org/10.1016/j.jclepro.2015.05.101.
    Paper not yet in RePEc: Add citation now
  18. Brander, M. (2017). Comparative analysis of attributional corporate greenhouse gas accounting, consequential life cycle assessment, and project/policy level accounting: A bioenergy case study. Journal of Cleaner Production, 167, 1401–1414. https://doi.org/10.1016/j.jclepro.2017.02.097.
    Paper not yet in RePEc: Add citation now
  19. Brizga, J., Feng, K., & Hubacek, K. (2017). Household carbon footprints in the Baltic States: A global multi‐regional input–output analysis from 1995 to 2011. Applied Energy, 189, 780–788. https://doi.org/10.1016/j.apenergy.2016.01.102.

  20. Brunelli, S. (2020). Accounting and accountability tools and practices for environmental issues: A narrative historical academic debate. In M. Del Baldo, J. Dillard, M.‐G. Baldarelli, & M. Ciambotti (Eds.), Accounting, accountability and society: Trends and perspectives in reporting, management and governance for sustainability (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-030-41142-8_1.

  21. Bullard, C. W., Penner, P. S., & Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input–output analysis. Resources and Energy, 1(3), 267–313. https://doi.org/10.1016/0165-0572(78)90008-7.

  22. Cai, B., Cui, C., Zhang, D., Cao, L., Wu, P., Pang, L., Zhang, J., & Dai, C. (2019). China city‐level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Applied Energy, 253, 113579. https://doi.org/10.1016/j.apenergy.2019.113579.

  23. CDP. (2022). How can companies address their scope 3 greenhouse gas emissions? CDP. www.cdp.net. https://www.cdp.net/en/articles/companies/how‐can‐companies‐address‐their‐scope‐3‐greenhouse‐gas‐emissions.
    Paper not yet in RePEc: Add citation now
  24. Chen, B., Li, J. S., Wu, X. F., Han, M. Y., Zeng, L., Li, Z., & Chen, G. Q. (2018). Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis. Applied Energy, 210, 98–107. https://doi.org/10.1016/j.apenergy.2017.10.113.

  25. Chen, G., Hadjikakou, M., & Wiedmann, T. (2017). Urban carbon transformations: Unravelling spatial and inter‐sectoral linkages for key city industries based on multi‐region input–output analysis. Journal of Cleaner Production, 163, 224–240. https://doi.org/10.1016/j.jclepro.2016.04.046.
    Paper not yet in RePEc: Add citation now
  26. Chen, J. M., Yu, B., & Wei, Y. M. (2019). CO2 emissions accounting for the chemical industry: An empirical analysis for China [article]. Natural Hazards, 99(3), 1327–1343. https://doi.org/10.1007/s11069-019-03589-1.

  27. Chen, J., Zhang, H., Zhao, G., & Qureshi, A. S. (2022). A novel method for estimating carbon emission based on industrial metabolism: Blast furnace iron‐making with micro mechanism model. Energy Reports, 8, 10125–10133. https://doi.org/10.1016/j.egyr.2022.08.016.
    Paper not yet in RePEc: Add citation now
  28. Chen, Y.‐H., Chen, M.‐X., & Mishra, A. K. (2020). Subsidies under uncertainty: Modeling of input‐ and output‐oriented policies. Economic Modelling, 85, 39–56. https://doi.org/10.1016/j.econmod.2019.05.005.
    Paper not yet in RePEc: Add citation now
  29. Common, M. S., & Salma, U. (1992). Accounting for changes in Australian carbon dioxide emissions. Energy Economics, 14(3), 217–225. https://doi.org/10.1016/0140-9883(92)90015-6.

  30. Comyns, B. (2018). Climate change reporting and multinational companies: Insights from institutional theory and international business. Accounting Forum, 42(1), 65–77. https://doi.org/10.1016/j.accfor.2017.07.003.

  31. Crawford, R. H. (2008). Validation of a hybrid life‐cycle inventory analysis method. Journal of Environmental Management, 88(3), 496–506. https://doi.org/10.1016/j.jenvman.2007.03.024.
    Paper not yet in RePEc: Add citation now
  32. Dahal, K., & Niemelä, J. (2017). Cities' greenhouse gas accounting methods: A study of Helsinki, Stockholm, and Copenhagen [article]. Climate, 5(2), 31. https://doi.org/10.3390/cli5020031.
    Paper not yet in RePEc: Add citation now
  33. Davis, S. J., & Caldeira, K. (2010). Consumption‐based accounting of CO2 emissions. Proceedings of the National Academy of Sciences, 107(12), 5687–5692. https://doi.org/10.1073/pnas.0906974107.
    Paper not yet in RePEc: Add citation now
  34. de Haas, D., & Andrews, J. (2022). Nitrous oxide emissions from wastewater treatment—Revisiting the IPCC 2019 refinement guidelines. Environmental Challenges, 8, 100557. https://doi.org/10.1016/j.envc.2022.100557.
    Paper not yet in RePEc: Add citation now
  35. de Paula Diniz, D., Carvalho, M., & Abrahão, R. (2021). Greenhouse gas accounting for the energy transition in a brewery. Environmental Progress & Sustainable Energy, 40(2), e13563. https://doi.org/10.1002/ep.13563.
    Paper not yet in RePEc: Add citation now
  36. Downie, A., Lau, D., Cowie, A., & Munroe, P. (2014). Approaches to greenhouse gas accounting methods for biomass carbon. Biomass and Bioenergy, 60, 18–31. https://doi.org/10.1016/j.biombioe.2013.11.009.
    Paper not yet in RePEc: Add citation now
  37. Duus‐Otterström, G. (2022). Sovereign states in the greenhouse: Does jurisdiction speak against consumption‐based emissions accounting? [article]. Ethics, Policy and Environment, 25, 337–353. https://doi.org/10.1080/21550085.2022.2061253.
    Paper not yet in RePEc: Add citation now
  38. Duus‐Otterström, G., & Hjorthen, F. D. (2019). Consumption‐based emissions accounting: The normative debate [article]. Environmental Politics, 28(5), 866–885. https://doi.org/10.1080/09644016.2018.1507467.
    Paper not yet in RePEc: Add citation now
  39. Eberle, A. L., & Heath, G. A. (2020). Estimating carbon dioxide emissions from electricity generation in the United States: How sectoral allocation may shift as the grid modernizes. Energy Policy, 140, 111324. https://doi.org/10.1016/j.enpol.2020.111324.

  40. European Central Bank. (2023). What are climate disclosures? Retrieved June 19, 2023, from www.ecb.europa.eu website: https://www.ecb.europa.eu/ecb/educational/explainers/html/what-are-climate-disclosures.en.html.
    Paper not yet in RePEc: Add citation now
  41. Friedrich, T. J., Velte, P., & Wulf, I. (2022). Corporate climate reporting of European banks: Are these institutions compliant with climate issues?. Business Strategy and the Environment, 1–18, 2834. https://doi.org/10.1002/bse.3272.
    Paper not yet in RePEc: Add citation now
  42. Gallo, M., Arcioni, L., Leonardi, D., Moreschi, L., & Del Borghi, A. (2020). GHG accounting for sustainable mega‐events: How lessons learnt during the Milan expo 2015 world fair could lead to less carbon‐intensive future mega‐events. Sustainable Production and Consumption, 22, 88‐109. https://doi.org/10.1016/j.spc.2020.02.007.
    Paper not yet in RePEc: Add citation now
  43. Global Reporting Index. (2018). GRI 303: Water and effluents standards. Retrieved from https://www.globalreporting.org website: https://www.globalreporting.org/standards/media/1909/gri-303-water-and-effluents-2018.pdf.
    Paper not yet in RePEc: Add citation now
  44. Goh, T., & Ang, B. W. (2019). Comprehensive economy‐wide energy efficiency and emissions accounting systems for tracking national progress. Energy Efficiency, 12(8), 1951–1971. https://doi.org/10.1007/s12053-019-09796-w.
    Paper not yet in RePEc: Add citation now
  45. Greene, S., Jia, H., & Rubio‐Domingo, G. (2020). Well‐to‐tank carbon emissions from crude oil maritime transportation. Transportation Research Part D: Transport and Environment, 88, 102587. https://doi.org/10.1016/j.trd.2020.102587.
    Paper not yet in RePEc: Add citation now
  46. Greenhouse Gas Protocol. (2004). Standards|greenhouse gas protocol. World Resources Institute. Retrieved June 19, 2023, from ghgprotocol.org website: https://ghgprotocol.org/standards.
    Paper not yet in RePEc: Add citation now
  47. Gunfaus, M. T., & Waisman, H. (2021). Assessing the adequacy of the global response to the Paris Agreement: Toward a full appraisal of climate ambition and action. Earth System Governance, 8, 100102. https://doi.org/10.1016/j.esg.2021.100102.
    Paper not yet in RePEc: Add citation now
  48. Gustavsson, L., Karjalainen, T., Marland, G., Savolainen, I., Schlamadinger, B., & Apps, M. (2000). Project‐based greenhouse‐gas accounting: guiding principles with a focus on baselines and additionality. Energy Policy, 28(13), 935–946. https://doi.org/10.1016/s0301-4215(00)00079-3.

  49. Hasegawa, R., Kagawa, S., & Tsukui, M. (2015). Carbon footprint analysis through constructing a multi‐region input–output table: A case study of Japan. Journal of Economic Structures, 4(1), 5. https://doi.org/10.1186/s40008-015-0015-6.
    Paper not yet in RePEc: Add citation now
  50. Hou, H., Wang, J., Yuan, M., Liang, S., Liu, T., Wang, H., Bai, H., & Xu, H. (2021). Estimating the mitigation potential of the Chinese service sector using embodied carbon emissions accounting. Environmental Impact Assessment Review, 86, 106510. https://doi.org/10.1016/j.eiar.2020.106510.
    Paper not yet in RePEc: Add citation now
  51. Houqe, M. N., & Khan, H. Z. (2022). What determines the quality of carbon reporting? A system‐oriented theories and corporate governance perspective. Business Strategy and the Environment, 32, 3197–3216. https://doi.org/10.1002/bse.3295.
    Paper not yet in RePEc: Add citation now
  52. Inomata, S., & Owen, A. (2014). Comparative evaluation of MRIO databases. Economic Systems Research, 26(3), 239–244. https://doi.org/10.1080/09535314.2014.940856.

  53. Jager, H. I., Griffiths, N. A., Hansen, C. H., King, A. W., Matson, P. G., Singh, D., & Pilla, R. M. (2022). Getting lost tracking the carbon footprint of hydropower. Renewable and Sustainable Energy Reviews, 162, 112408. https://doi.org/10.1016/j.rser.2022.112408.
    Paper not yet in RePEc: Add citation now
  54. Jakučionytė‐Skodienė, M., & Liobikienė, G. (2022). The changes in climate change concern, responsibility assumption and impact on climate‐friendly behaviour in EU from the Paris Agreement until 2019. Environmental Management, 69, 1–16. https://doi.org/10.1007/s00267-021-01574-8.
    Paper not yet in RePEc: Add citation now
  55. Jiang, Y., Fan, H., Zhu, Y., & Xu, J. F. (2023). Carbon disclosure: A legitimizing tool or a governance tool? Evidence from listed US companies. Journal of International Financial Management and Accounting, 34(1), 36–70. https://doi.org/10.1111/jifm.12161.
    Paper not yet in RePEc: Add citation now
  56. Jing, R., Cheng, J. C. P., Gan, V. J. L., Woon, K. S., & Lo, I. M. C. (2014). Comparison of greenhouse gas emission accounting methods for steel production in China. Journal of Cleaner Production, 83, 165–172. https://doi.org/10.1016/j.jclepro.2014.07.016.
    Paper not yet in RePEc: Add citation now
  57. Jones, C., & Kammen, D. M. (2014). Spatial distribution of U.S. Household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environmental Science & Technology, 48(2), 895–902. https://doi.org/10.1021/es4034364.
    Paper not yet in RePEc: Add citation now
  58. Joshi, S. (1999). Product environmental life‐cycle assessment using input–output techniques. Journal of Industrial Ecology, 3(2–3), 95‐120. https://doi.org/10.1162/108819899569449.
    Paper not yet in RePEc: Add citation now
  59. Kanemoto, K., Moran, D., Lenzen, M., & Geschke, A. (2014). International trade undermines national emission reduction targets: New evidence from air pollution. Global Environmental Change, 24, 52–59. https://doi.org/10.1016/j.gloenvcha.2013.09.008.
    Paper not yet in RePEc: Add citation now
  60. Karakaya, E., Yılmaz, B., & Alataş, S. (2019). How production‐based and consumption‐based emissions accounting systems change climate policy analysis: The case of CO2 convergence. Environmental Science and Pollution Research, 26(16), 16682–16694. https://doi.org/10.1007/s11356-019-05007-2.
    Paper not yet in RePEc: Add citation now
  61. Kaur, R., Patsavellas, J., Haddad, Y., & Salonitis, K. (2022). Carbon accounting management in complex manufacturing supply chains: A structured framework approach. Procedia CIRP, 107, 869–875. https://doi.org/10.1016/j.procir.2022.05.077.
    Paper not yet in RePEc: Add citation now
  62. Kennelly, C., Berners‐Lee, M., & Hewitt, C. N. (2019). Hybrid life‐cycle assessment for robust, best‐practice carbon accounting. Journal of Cleaner Production, 208, 35–43. https://doi.org/10.1016/j.jclepro.2018.09.231.
    Paper not yet in RePEc: Add citation now
  63. Khan, H. Z., Houqe, M. N., & Ielemia, I. K. (2022). Organic versus cosmetic efforts of the quality of carbon reporting by top New Zealand firms. Does market reward or penalise?. Business Strategy and the Environment, 32, 686–703. https://doi.org/10.1002/bse.3169.
    Paper not yet in RePEc: Add citation now
  64. Kirikkaleli, D., Güngör, H., & Adebayo, T. S. (2022). Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile. Business Strategy and the Environment, 31(3), 1123‐1137. https://doi.org/10.1002/bse.2945.
    Paper not yet in RePEc: Add citation now
  65. Kreiger, M., & Pearce, J. M. (2013). Environmental life cycle analysis of distributed three‐dimensional printing and conventional manufacturing of polymer products. ACS Sustainable Chemistry & Engineering, 1(12), 1511–1519. https://doi.org/10.1021/sc400093k.
    Paper not yet in RePEc: Add citation now
  66. Law, Y., Jacobsen, G. E., Smith, A. M., Yuan, Z., & Lant, P. (2013). Fossil organic carbon in wastewater and its fate in treatment plants. Water Research, 47(14), 5270–5281. https://doi.org/10.1016/j.watres.2013.06.002.
    Paper not yet in RePEc: Add citation now
  67. Lenzen, M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy, 26(6), 495–506. https://doi.org/10.1016/S0301-4215(98)00012-3.

  68. Lenzen, M. (2000). Errors in conventional and input–output—based life—cycle inventories. Journal of Industrial Ecology, 4(4), 127‐148. https://doi.org/10.1162/10881980052541981.
    Paper not yet in RePEc: Add citation now
  69. Lenzen, M., & Crawford, R. (2009). The path exchange method for hybrid LCA. Environmental Science & Technology, 43(21), 8251–8256. https://doi.org/10.1021/es902090z.
    Paper not yet in RePEc: Add citation now
  70. Lenzen, M., & Dey, C. (2000). Truncation error in embodied energy analyses of basic iron and steel products. Energy, 25(6), 577–585. https://doi.org/10.1016/S0360-5442(99)00088-2.

  71. Lenzen, M., & Treloar, G. (2002). Embodied energy in buildings: Wood versus concrete—Reply to Börjesson and Gustavsson. Energy Policy, 30(3), 249–255. https://doi.org/10.1016/S0301-4215(01)00142-2.

  72. Li, C., Yu, Y., Yao, A. C. C., Zhang, D., & Zhang, X. (2022). An authenticated and secure accounting system for international emissions trading. Climate Policy, 22, 1333–1342. https://doi.org/10.1080/14693062.2022.2107474.

  73. Li, Q., Guo, R., Li, F., & Xia, B. (2012). Integrated inventory‐based carbon accounting for energy‐induced emissions in Chongming eco‐island of Shanghai, China. Energy Policy, 49, 173–181. https://doi.org/10.1016/j.enpol.2012.05.027.
    Paper not yet in RePEc: Add citation now
  74. Li, S., Xue, F., Xia, C., Zhang, J., Bian, A., Lang, Y., & Zhou, J. (2022). A big data‐based commuting carbon emissions accounting method—A case of Hangzhou. Landscape, 11(6), 900. https://doi.org/10.3390/land11060900.
    Paper not yet in RePEc: Add citation now
  75. Liu, H., & Fan, X. (2017). Value‐added‐based accounting of CO2 emissions: A multi‐regional input–output approach [article]. Sustainability (Switzerland), 9(12), Article 2220. https://doi.org/10.3390/su9122220.
    Paper not yet in RePEc: Add citation now
  76. Liu, Z., Sun, T., Yu, Y., Ke, P., Deng, Z., Lu, C., Huo, D., & Ding, X. (2022). Near‐real‐time carbon emission accounting technology toward carbon neutrality. Engineering, 14, 44–51. https://doi.org/10.1016/j.eng.2021.12.019.
    Paper not yet in RePEc: Add citation now
  77. Lu, Y., & Abeysekera, I. (2021). Do investors and analysts value strategic corporate social responsibility disclosures? Evidence from China. Journal of International Financial Management and Accounting, 32(2), 147–181. https://doi.org/10.1111/jifm.12126.
    Paper not yet in RePEc: Add citation now
  78. Luo, L., & Tang, Q. (2022). The real effects of ESG reporting and GRI standards on carbon mitigation: International evidence. Business Strategy and the Environment, 32, 2985–3000. https://doi.org/10.1002/bse.3281.
    Paper not yet in RePEc: Add citation now
  79. Luo, L., Tang, Q., & Peng, J. (2018). The direct and moderating effects of power distance on carbon transparency: An international investigation of cultural value and corporate social responsibility. Business Strategy and the Environment, 27(8), 1546–1557. https://doi.org/10.1002/bse.2213.

  80. Malik, A., McBain, D., Wiedmann, T. O., Lenzen, M., & Murray, J. (2019). Advancements in input‐output models and indicators for consumption‐based accounting. Journal of Industrial Ecology, 23(2), 300‐312. https://doi.org/10.1111/jiec.12771.
    Paper not yet in RePEc: Add citation now
  81. Mathieu, L., Tinch, R., & Provins, A. (2018). Catchment management in England and Wales: The role of arguments for ecosystems and their services. Biodiversity and Conservation, 27(7), 1639–1658. https://doi.org/10.1007/s10531-016-1176-9.
    Paper not yet in RePEc: Add citation now
  82. Matisoff, D. C., Noonan, D. S., & O'Brien, J. J. (2013). Convergence in environmental reporting: Assessing the carbon disclosure project. Business Strategy and the Environment, 22(5), 285‐305. https://doi.org/10.1002/bse.1741.
    Paper not yet in RePEc: Add citation now
  83. McAfee, K. (2022). Shall the American Association of Geographers endorse carbon offsets? Absolutely not! The Professional Geographer, 74(1), 171–177. https://doi.org/10.1080/00330124.2021.1934879.
    Paper not yet in RePEc: Add citation now
  84. Mi, Z., Zhang, Y., Guan, D., Shan, Y., Liu, Z., Cong, R., Yuan, X.‐C., & Wei, Y.‐M. (2016). Consumption‐based emission accounting for Chinese cities. Applied Energy, 184, 1073–1081. https://doi.org/10.1016/j.apenergy.2016.06.094.

  85. Miller, B. A., Blair, A., & McCann, M. (1985). Mortality patterns among professional artists: A preliminary report. Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer, 6(2), 303–313. http://europepmc.org/abstract/MED/4078697.
    Paper not yet in RePEc: Add citation now
  86. Minx, J., Baiocchi, G., Wiedmann, T., Barrett, J., Creutzig, F., Feng, K., Förster, M., Pichler, P.‐P., Weisz, H., & Hubacek, K. (2013). Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters, 8(3), 035039. https://doi.org/10.1088/1748-9326/8/3/035039.
    Paper not yet in RePEc: Add citation now
  87. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA‐P Group (2015). Preferred reporting items for systematic review and meta‐analysis protocols (PRISMA‐P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1.
    Paper not yet in RePEc: Add citation now
  88. Murray, J., & Lenzen, M. (2013). The sustainability practitioner's guide to multi‐regional input–output analysis. Common Ground Champaign. https://doi.org/10.18848/978-1-61229-191-8/CGP.
    Paper not yet in RePEc: Add citation now
  89. Murthy, N. S., Panda, M., & Parikh, J. (1997). Economic development, poverty reduction and carbon emissions in India. Energy Economics, 19(3), 327–354. https://doi.org/10.1016/S0140-9883(96)01021-3.

  90. Navare, K., Arts, W., Faraca, G., Bossche, G. V.d., Sels, B., & Acker, K. V. (2022). Environmental impact assessment of cascading use of wood in bio‐fuels and bio‐chemicals. Resources, Conservation and Recycling, 186, 106588. https://doi.org/10.1016/j.resconrec.2022.106588.
    Paper not yet in RePEc: Add citation now
  91. Ohndorf, M., & Schmitz, S. (2002). When accountants create knowledge: Learning from the International Standardization of Greenhouse Gas Accounting. In F. Biermann, S. Campe, & K. Jacob Proceedings of the 2002 Berlin Conference on the Human Dimensions of Global Environmental Change “Knowledge for the Sustainability Transition. The Challenge for Social Science”. Berlin, Potsdam and Oldenburg: Global Governance Project Amsterdam.
    Paper not yet in RePEc: Add citation now
  92. Page, J., Kåresdotter, E., Destouni, G., Pan, H., & Kalantari, Z. (2021). A more complete accounting of greenhouse gas emissions and sequestration in urban landscapes. Anthropocene, 34, 100296. https://doi.org/10.1016/j.ancene.2021.100296.
    Paper not yet in RePEc: Add citation now
  93. Palea, V., & Drogo, F. (2020). Carbon emissions and the cost of debt in the eurozone: The role of public policies, climate‐related disclosure and corporate governance. Business Strategy and the Environment, 29(8), 2953‐2972. https://doi.org/10.1002/bse.2550.

  94. Patchell, J. (2018). Can the implications of the GHG Protocol's scope 3 standard be realized? Journal of Cleaner Production, 185, 941–958. https://doi.org/10.1016/j.jclepro.2018.03.003.
    Paper not yet in RePEc: Add citation now
  95. Pham, T., Meng, X., & Becken, S. (2022). Measuring tourism emissions at destination level: Australia case. Annals of Tourism Research Empirical Insights, 3(2), 100062. https://doi.org/10.1016/j.annale.2022.100062.
    Paper not yet in RePEc: Add citation now
  96. Pizzi, S., Del Baldo, M., Caputo, F., & Venturelli, A. (2022). Voluntary disclosure of sustainable development goals in mandatory non‐financial reports: The moderating role of cultural dimension. Journal of International Financial Management and Accounting, 33(1), 83–106. https://doi.org/10.1111/jifm.12139.
    Paper not yet in RePEc: Add citation now
  97. Pomponi, F., & Lenzen, M. (2018). Hybrid life cycle assessment (LCA) will likely yield more accurate results than process‐based LCA. Journal of Cleaner Production, 176, 210–215. https://doi.org/10.1016/j.jclepro.2017.12.119.
    Paper not yet in RePEc: Add citation now
  98. Reeve, A., & Aisbett, E. (2022). National accounting systems as a foundation for embedded emissions accounting in trade‐related climate policies. Journal of Cleaner Production, 371, 133678. https://doi.org/10.1016/j.jclepro.2022.133678.
    Paper not yet in RePEc: Add citation now
  99. Russell, S. (2019). Estimating and reporting the comparative emissions impacts of products. New York, USA: World Resource Institute. Retrieved from https://ghgprotocol.org/sites/default/files/2023-03/18_WP_Comparative-Emissions_final.pdf.
    Paper not yet in RePEc: Add citation now
  100. SBTi. (2020). Science‐based target initiative science‐based target setting manual version 4.1–2. Retrieved from https://sciencebasedtargets.org/resources/legacy/2017/04/SBTi-manual.pdf.
    Paper not yet in RePEc: Add citation now
  101. SBTi. (2022). Companies committed to cut emissions in line with climate science now represent $38 trillion of global economy. Science Based Targets. https://sciencebasedtargets.org/news/companies-committed-to-cut-emissions-in-line-with-climate-science-now-represent-38-trillion-of-global-economy#:~:text=At%20the%20end%20of%202021.
    Paper not yet in RePEc: Add citation now
  102. Schaefer, A. (2009). Corporate greening and changing regulatory regimes: The UK water industry. Business Strategy and the Environment, 18(5), 320‐333. https://doi.org/10.1002/bse.591.
    Paper not yet in RePEc: Add citation now
  103. Schaltegger, S., & Csutora, M. (2012). Carbon accounting for sustainability and management. Status quo and challenges. Journal of Cleaner Production, 36, 1–16. https://doi.org/10.1016/j.jclepro.2012.06.024.
    Paper not yet in RePEc: Add citation now
  104. Seshadri, A. K. (2021). Cumulative emissions accounting of greenhouse gases due to path independence for a sufficiently rapid emissions cycle. Climate Dynamics, 57(3), 787–798. https://doi.org/10.1007/s00382-021-05739-3.
    Paper not yet in RePEc: Add citation now
  105. Sharifi, A., Wu, Y., Khamchiangta, D., Yoshida, T., & Yamagata, Y. (2018). Urban carbon mapping: Towards a standardized framework. Energy Procedia, 152, 799–808. https://doi.org/10.1016/j.egypro.2018.09.193.
    Paper not yet in RePEc: Add citation now
  106. Shyng, J.‐H. (2021). The practice of Deming cycle improvement mechanism in climate change environmental education. Journal of Contemporary Educational Research, 5(8), 205–214. https://doi.org/10.26689/jcer.v5i8.2463.
    Paper not yet in RePEc: Add citation now
  107. Stanny, E. (2013). Voluntary disclosures of emissions by US firms. Business Strategy and the Environment, 22(3), 145–158. https://doi.org/10.1002/bse.1732.

  108. Stechemesser, K., & Guenther, E. (2012). Carbon accounting: A systematic literature review. Journal of Cleaner Production, 36, 17–38. https://doi.org/10.1016/j.jclepro.2012.02.021.
    Paper not yet in RePEc: Add citation now
  109. Steininger, K. W., Munoz, P., Karstensen, J., Peters, G. P., Strohmaier, R., & Velázquez, E. (2018). Austria's consumption‐based greenhouse gas emissions: Identifying sectoral sources and destinations. Global Environmental Change, 48, 226–242. https://doi.org/10.1016/j.gloenvcha.2017.11.011.
    Paper not yet in RePEc: Add citation now
  110. Stylos, N., & Koroneos, C. (2014). Carbon footprint of polycrystalline photovoltaic systems. Journal of Cleaner Production, 64, 639–645. https://doi.org/10.1016/j.jclepro.2013.10.014.
    Paper not yet in RePEc: Add citation now
  111. Tian, X., Chang, M., Lin, C., & Tanikawa, H. (2014). China's carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns. Applied Energy, 123, 19–28. https://doi.org/10.1016/j.apenergy.2014.02.016.

  112. Tosun, J. (2022). Addressing climate change through climate action. Climate Action, 1(1), 1. https://doi.org/10.1007/s44168-022-00003-8.
    Paper not yet in RePEc: Add citation now
  113. Tranberg, B., Corradi, O., Lajoie, B., Gibon, T., Staffell, I., & Andresen, G. B. (2019). Real‐time carbon accounting method for the European electricity markets. Energy Strategy Reviews, 26, 100367. https://doi.org/10.1016/j.esr.2019.100367.
    Paper not yet in RePEc: Add citation now
  114. Treloar, G. J. (1997). Extracting embodied energy paths from input–output tables: Towards an input–output‐based hybrid energy analysis method. Economic Systems Research, 9(4), 375–391. https://doi.org/10.1080/09535319700000032.

  115. Tukker, A., & Dietzenbacher, E. (2013). Global multiregional input–output frameworks: An introduction and outlook. Economic Systems Research, 25(1), 1–19. https://doi.org/10.1080/09535314.2012.761179.
    Paper not yet in RePEc: Add citation now
  116. Turk, J. K., Reay, D. S., & Haszeldine, R. S. (2018). Gas‐fired power in the UK: Bridging supply gaps and implications of domestic shale gas exploitation for UK climate change targets. Science of the Total Environment, 616‐617, 318–325. https://doi.org/10.1016/j.scitotenv.2017.11.007.
    Paper not yet in RePEc: Add citation now
  117. UNFCCC. (2021). Climate action pathway water vision and summary. Retrieved from https://unfccc.int/sites/default/files/resource/WaterPathwayVisionSummary.pdf.
    Paper not yet in RePEc: Add citation now
  118. Vetőné Mózner, Z. (2013). A consumption‐based approach to carbon emission accounting – Sectoral differences and environmental benefits. Journal of Cleaner Production, 42, 83–95. https://doi.org/10.1016/j.jclepro.2012.10.014.
    Paper not yet in RePEc: Add citation now
  119. Von Wald, G., Mastrandrea, M. D., Cullenward, D., & Weyant, J. (2020). Analyzing California's framework for estimating greenhouse gas emissions associated with retail electricity sales. The Electricity Journal, 33(8), 106818. https://doi.org/10.1016/j.tej.2020.106818.
    Paper not yet in RePEc: Add citation now
  120. Walter, I. (1973). The pollution content of American trade. Western Economic Journal, 11(1), 61–70. https://www.proquest.com/scholarly-journals/pollution-content-american-trade/docview/1297272117/se-2?accountid=12753, https://doi.org/10.1111/j.1465-7295.1973.tb00961.x.
    Paper not yet in RePEc: Add citation now
  121. Wang, B., Cui, C. Q., Zhao, Y. X., Yang, B., & Yang, Q. Z. (2019). Carbon emissions accounting for China's coal mining sector: Invisible sources of climate change [article]. Natural Hazards, 99(3), 1345–1364. https://doi.org/10.1007/s11069-018-3526-2.

  122. Wang, C., Chang, Y., Zhang, L., Chen, Y., & Pang, M. (2018). Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters. Energy, 158, 121–127. https://doi.org/10.1016/j.energy.2018.06.008.

  123. Wang, S., & Chen, B. (2018). Three‐tier carbon accounting model for cities. Applied Energy, 229, 163–175. https://doi.org/10.1016/j.apenergy.2018.07.109.
    Paper not yet in RePEc: Add citation now
  124. Wei, W., Zhang, P., Yao, M., Xue, M., Miao, J., Liu, B., & Wang, F. (2020). Multi‐scope electricity‐related carbon emissions accounting: A case study of Shanghai [article]. Journal of Cleaner Production, 252, 119789. https://doi.org/10.1016/j.jclepro.2019.119789.
    Paper not yet in RePEc: Add citation now
  125. White, L. V., Fazeli, R., Cheng, W., Aisbett, E., Beck, F. J., Baldwin, K. G. H., Howarth, P., & O'Neill, L. (2021). Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting. Energy, 215, 119139. https://doi.org/10.1016/j.energy.2020.119139.

  126. Wiedmann, T. (2009). A review of recent multi‐region input–output models used for consumption‐based emission and resource accounting. Ecological Economics, 69(2), 211–222. https://doi.org/10.1016/j.ecolecon.2009.08.026.
    Paper not yet in RePEc: Add citation now
  127. Wiedmann, T. O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., & Kanemoto, K. (2015). The material footprint of nations. Proceedings of the National Academy of Sciences, 112(20), 6271–6276. https://doi.org/10.1073/pnas.1220362110.
    Paper not yet in RePEc: Add citation now
  128. Wiedmann, T., & Lenzen, M. (2018). Environmental and social footprints of international trade. Nature Geoscience, 11(5), 314–321. https://doi.org/10.1038/s41561-018-0113-9.
    Paper not yet in RePEc: Add citation now
  129. Wiedmann, T., Wilting, H. C., Lenzen, M., Lutter, S., & Palm, V. (2011). Quo Vadis MRIO? Methodological, data and institutional requirements for multi‐region input–output analysis. Ecological Economics, 70(11), 1937–1945. https://doi.org/10.1016/j.ecolecon.2011.06.014.

  130. Wolf, S. A., & Ghosh, R. (2020). A practice‐centered analysis of environmental accounting standards: Integrating agriculture into carbon governance. Land Use Policy, 96, 103552. https://doi.org/10.1016/j.landusepol.2018.08.003.

  131. Xu, D., Li, Y., Zhao, M., Wang, X., Zhang, Y., Chen, B., & Yang, Z. (2022). Spatial characteristics analysis of sectoral carbon transfer path in international trade: A comparison of the United States and China [article]. Applied Energy, 323, 119566. https://doi.org/10.1016/j.apenergy.2022.119566.

  132. Yin, L., Sharifi, A., Liqiao, H., & Jinyu, C. (2022). Urban carbon accounting: An overview. Urban Climate, 44, 101195. https://doi.org/10.1016/j.uclim.2022.101195.
    Paper not yet in RePEc: Add citation now
  133. Yu, X., Zheng, H., Sun, L., & Shan, Y. (2020). An emissions accounting framework for industrial parks in China. Journal of Cleaner Production, 244, 118712. https://doi.org/10.1016/j.jclepro.2019.118712.
    Paper not yet in RePEc: Add citation now
  134. Zameer, H., Wang, Y., & Saeed, M. R. (2021). Net‐zero emission targets and the role of managerial environmental awareness, customer pressure, and regulatory control toward environmental performance. Business Strategy and the Environment, 30(8), 4223–4236. https://doi.org/10.1002/bse.2866.
    Paper not yet in RePEc: Add citation now
  135. Zhang, D., Caron, J., & Winchester, N. (2019). Sectoral aggregation error in the accounting of energy and emissions embodied in trade and consumption [article]. Journal of Industrial Ecology, 23(2), 402–411. https://doi.org/10.1111/jiec.12734.

  136. Zhang, H., Sun, W., Li, W., & Ma, G. (2022). A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub. Applied Energy, 309, 118485. https://doi.org/10.1016/j.apenergy.2021.118485.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Advancing biomass pyrolysis: a bibliometric analysis of global research trends (2002–2022). (2025). Yahaya, Suleiman Abimbola ; Johari, Anwar ; Amusa, Abiodun Abdulhameed.
    In: Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development.
    RePEc:spr:endesu:v:27:y:2025:i:4:d:10.1007_s10668-023-04292-9.

    Full description at Econpapers || Download paper

  2. Hybrid LCA for sustainable transitions: principles, applications, and prospects. (2025). Wang, R ; Tukker, A ; Heijungs, R ; Hagenaars, R H.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125001169.

    Full description at Econpapers || Download paper

  3. Mitigating biomethane losses in European biogas plants: A techno-economic assessment. (2025). Carbone, C ; Agostini, A ; Buffi, M ; Hurtig, O ; Besseau, R ; Scarlat, N.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009134.

    Full description at Econpapers || Download paper

  4. A dynamic framework to align company climate reporting and action with global climate targets. (2024). Heidrich, Oliver ; Elnahass, Marwa ; Amezaga, Jaime ; Browne, Anthony ; Christy, Anna.
    In: Business Strategy and the Environment.
    RePEc:bla:bstrat:v:33:y:2024:i:4:p:3103-3128.

    Full description at Econpapers || Download paper

  5. Towards BitCO2, an individual consumption-based carbon emission reduction mechanism. (2023). Golinucci, Nicolo ; Rocco, Matteo Vincenzo ; Tonini, Francesco ; Colombo, Emanuela.
    In: Energy Policy.
    RePEc:eee:enepol:v:183:y:2023:i:c:s0301421523004366.

    Full description at Econpapers || Download paper

  6. Are SRI funds financing carbon emissions? An input-output life cycle assessment of investment funds. (2023). Gibon, Thomas ; Rubin, Mirco ; Popescu, Ioana-Stefania ; Benetto, Enrico ; Hitaj, Claudia.
    In: Ecological Economics.
    RePEc:eee:ecolec:v:212:y:2023:i:c:s0921800923001817.

    Full description at Econpapers || Download paper

  7. Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data. (2022). Staake, Thorsten ; Gunther, Sebastian A ; Hopf, Konstantin ; Weigert, Andreas.
    In: Energy Policy.
    RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522003810.

    Full description at Econpapers || Download paper

  8. How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE. (2022). Merciai, Stefano ; Steubing, Bernhard ; Tukker, Arnold ; de Koning, Arjan.
    In: Journal of Industrial Ecology.
    RePEc:bla:inecol:v:26:y:2022:i:4:p:1406-1422.

    Full description at Econpapers || Download paper

  9. Creating multi‐scale nested MRIO tables for linking localized impacts to global consumption drivers. (2022). Sun, Yayen ; Wiedmann, Thomas ; Langdon, Sarah ; Li, Mengyu ; Lenzen, Manfred ; Fry, Jacob ; Malik, Arunima ; Geschke, Arne.
    In: Journal of Industrial Ecology.
    RePEc:bla:inecol:v:26:y:2022:i:1:p:281-293.

    Full description at Econpapers || Download paper

  10. Economic Viability and Greenhouse Gas (GHG) Budget of the Biomethane Retrofit of Manure-Operated Biogas Plants: A Case Study from Piedmont, Italy. (2021). Puleo, Marta ; Zanetti, Mariachiara ; Panepinto, Deborah ; Casasso, Alessandro.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:14:p:7979-:d:595862.

    Full description at Econpapers || Download paper

  11. Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review. (2021). Plankenbuhler, Thomas ; Kolb, Sebastian ; Hofmann, Katharina ; Karl, Jurgen ; Bergerson, Joule.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004366.

    Full description at Econpapers || Download paper

  12. Dimensions and characteristics of biogas policies – Modelling the European policy landscape. (2021). Anderberg, S ; Gustafsson, M.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304901.

    Full description at Econpapers || Download paper

  13. Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock. (2021). Forero, Johana Paola ; Brattebo, Helge ; Resch, Eirik ; Lausselet, Carine.
    In: Journal of Industrial Ecology.
    RePEc:bla:inecol:v:25:y:2021:i:2:p:419-434.

    Full description at Econpapers || Download paper

  14. Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy. (2020). Gaglio, Mattias ; Castaldelli, Giuseppe ; Fano, Elisa Anna ; Tamburini, Elena.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:8:p:3260-:d:346654.

    Full description at Econpapers || Download paper

  15. The Future Agricultural Biogas Plant in Germany: A Vision. (2019). Kreidenweis, Ulrich ; Theuerl, Susanne ; Grundmann, Philipp ; Landwehr, Niels ; Heiermann, Monika ; Herrmann, Christiane ; Prochnow, Annette.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:3:p:396-:d:201161.

    Full description at Econpapers || Download paper

  16. Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?. (2019). Murphy, Jerry D ; Long, Aoife.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305556.

    Full description at Econpapers || Download paper

  17. Global Warming and Acidification Potential Assessment of a Collective Manure Management System for Bioenergy Production and Nitrogen Removal in Northern Italy. (2018). Guido, Viviana ; Cattaneo, Martina ; Provolo, Giorgio ; Mattachini, Gabriele ; Riva, Elisabetta ; Finzi, Alberto.
    In: Sustainability.
    RePEc:gam:jsusta:v:10:y:2018:i:10:p:3653-:d:175155.

    Full description at Econpapers || Download paper

  18. Factors influencing prices for heat from biogas plants. (2018). Halbherr, Verena ; Braun, Lorenz ; Herbes, Carsten.
    In: Applied Energy.
    RePEc:eee:appene:v:221:y:2018:i:c:p:308-318.

    Full description at Econpapers || Download paper

  19. How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany. (2018). Horschig, Thomas ; Gawel, Erik ; Thran, Daniela ; Adams, P. W. R., .
    In: Applied Energy.
    RePEc:eee:appene:v:213:y:2018:i:c:p:555-572.

    Full description at Econpapers || Download paper

  20. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. (2017). Heijungs, Reinout ; Aghbashlo, Mortaza ; Rajaeifar, Mohammad Ali ; Tabatabaei, Meisam ; Ghanavati, Hossein ; Dashti, Behrouz B.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:79:y:2017:i:c:p:414-439.

    Full description at Econpapers || Download paper

  21. Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia. (2017). Chaiprapat, Sumate ; Hsu, Shu-Chien ; Leu, Shao-Yuan ; Hadi, Pejman ; Kim, Lee-Hyung ; Ko, Chun-Han.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:68:y:2017:i:p2:p:1051-1062.

    Full description at Econpapers || Download paper

  22. The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector. (2017). Hammond, Geoffrey P ; O'Grady, aine .
    In: Energy.
    RePEc:eee:energy:v:118:y:2017:i:c:p:937-949.

    Full description at Econpapers || Download paper

  23. Temporal-spatial variation analysis of agricultural biomass and its policy implication as an alternative energy in northeastern China. (2017). Wang, Wenyan ; Ouyang, Wei ; Liu, Genyuan ; Hao, Fanghua.
    In: Energy Policy.
    RePEc:eee:enepol:v:109:y:2017:i:c:p:337-349.

    Full description at Econpapers || Download paper

  24. Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies. (2016). Braun, Lorenz ; Rube, Dennis ; Herbes, Carsten.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:4:p:252-:d:66797.

    Full description at Econpapers || Download paper

  25. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. (2016). Horschig, Thomas ; Thornley, Patricia ; Roder, Mirjam ; Thran, Daniela.
    In: Applied Energy.
    RePEc:eee:appene:v:184:y:2016:i:c:p:840-852.

    Full description at Econpapers || Download paper

  26. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. (2016). Fiala, Marco ; Bacenetti, Jacopo ; Sala, Cesare ; Fusi, Alessandra.
    In: Applied Energy.
    RePEc:eee:appene:v:179:y:2016:i:c:p:669-686.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-25 19:45:51 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.