Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. Journal of Finance, 59(3), 1259–1294.
Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies, 21(2), 785–818.
Behrendt, S., & Schmidt, A. (2018). The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual level stock return volatility. Journal of Banking & Finance, 96, 355–367.
Benâ€Rephael, A., Da, Z., & Israelsen, R. D. (2017). It depends on where you search: Institutional investor attention and underreaction to news. Review of Financial Studies, 30(9), 3009–3047.
- Blankespoor, E., Miller, G. S., & White, H. D. (2014). The role of dissemination in market liquidity: Evidence from firms’ use of Twitter. The Accounting Review, 89(1), 79–112.
Paper not yet in RePEc: Add citation now
Bonaparte, Y., & Kumar, A. (2013). Political activism, information costs, and stock market participation. Journal of Financial Economics, 107(3), 760–786.
Brown, G. W., & Cliff, M. T. (2005). Investor sentiment and asset valuation. The Journal of Business, 78(2), 405–440.
Bushee, B. J., Core, J. E., Guay, W., & Hamm, S. J. W. (2010). The role of the business press as an information intermediary. Journal of Accounting Research, 48(1), 1–19.
- Cathcart, L., Gotthelf, N. M., Uhl, M., & Shi, Y. (2019). News sentiment and sovereign credit risk. European Financial Management.
Paper not yet in RePEc: Add citation now
Chen, H., De, P., Hu, Y., & Hwang, B. â€H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. Review of Financial Studies, 27(5), 1367–1403.
- Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2010). Who is tweeting on Twitter: Human, bot, or cyborg? Proceedings of the 26th Annual Computer Security Applications Conference (pp. 21–30). New York, NY: ACM.
Paper not yet in RePEc: Add citation now
- Cook, D. M., Waugh, B., Abdipanah, M., Hashemi, O., & Rahman, S. A. (2014). Twitter deception and influence: Issues of identity, slacktivism, and puppetry. Journal of Information Warfare, 13(1), 58–71.
Paper not yet in RePEc: Add citation now
Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461–1499.
Das, S. R., & Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management Science, 53(9), 1375–1388.
- Davis, C. A., Varol, O., Ferrara, E., Flammini, A., & Menczer, F. (2016). BotOrNot: A system to evaluate social bots. Retrieved from https://arxiv.org/pdf/1602.00975.pdf.
Paper not yet in RePEc: Add citation now
DeLong, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703–738.
DeMarzo, P. M., Vayanos, D., & Zwiebel, J. (2003). Persuasion bias, social influence, and unidimensional opinions. The Quarterly Journal of Economics, 118(3), 909–968.
Dimpfl, T., & Jank, S. (2016). Can internet search queries help to predict stock market volatility? European Financial Management, 22(2), 171–192.
Dougal, C., Engelberg, J., GarcÃa, D., & Parsons, C. A. (2012). Journalists and the stock market. Review of Financial Studies, 25(3), 639–679.
Engelberg, J. E., & Parsons, C. A. (2011). The causal impact of media in financial markets. Journal of Finance, 66(1), 67–97.
Enikolopov, R., Petrova, M., & Sonin, K. (2018). Social media and corruption. American Economic Journal: Applied Economics, 10(1), 150–174.
- Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104.
Paper not yet in RePEc: Add citation now
- Forbes. (2017). Can ‘fake news’ impact the stock market? Retrieved from https://www.forbes.com/sites/kenrapoza/2017/02/26/canâ€fakeâ€newsâ€impactâ€theâ€stockâ€market/#6cc91dc72fac.
Paper not yet in RePEc: Add citation now
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 1779–1801.
Gorodnichenko, Y., Pham, T., & Talavera, O. (2018). Social media, sentiment and public opinions: Evidence from #Brexit and #USElection (NBER Working Paper No. 24631).
Großâ€Klußmann, A., & Hautsch, N. (2011). When machines read the news: Using automated text analytics to quantify high frequency newsâ€implied market reactions. Journal of Empirical Finance, 18(2), 321–340.
Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)? Journal of Applied Econometrics, 20(7), 873–889.
Haustein, S., Bowman, T. D., Holmberg, K., Tsou, A., Sugimoto, C. R., & Larivière, V. (2016). Tweets as impact indicators: Examining the implications of automated ‘bot’ accounts on Twitter. Journal of the Association for Information Science and Technology, 67(1), 232–238.
Hirshleifer, D., & Teoh, S. H. (2003). Limited attention, information disclosure, and financial reporting. Journal of Accounting and Economics, 36(1–3), 337–386.
- Hong, H., Kubik, J. D., & Stein, J. C. (2005). The neighbor's portfolio: Wordâ€ofâ€mouth effects in the holdings and trades of money managers. Journal of Finance, 60(6), 2801–2824.
Paper not yet in RePEc: Add citation now
- Kogan, S., Moskowitz, T. J., & Niessner, M. (2018). Fake news: Evidence from financial markets (Working Paper). Massachusetts Institute of Technology, Yale University, and AQR Capital Management.
Paper not yet in RePEc: Add citation now
- Kollanyi, B., Howard, P. N., & Woolley, S. C. (2016). Bots and automation over Twitter during the US election (Data Memo 2016.4). Oxford, UK: Project on Computational Propaganda.
Paper not yet in RePEc: Add citation now
- Lee, K., Caverlee, J., & Webb, S. (2010). Uncovering social spammers: Social honeypots + machine learning. Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 435–442). New York, NY: ACM.
Paper not yet in RePEc: Add citation now
- Loria, S. (2018). TextBlob documentation. Retrieved from https://media.readthedocs.org/pdf/textblob/dev/textblob.pdf.
Paper not yet in RePEc: Add citation now
- Nasseri, A. A., Tucker, A., & De Cesare, S. (2015). Quantifying StockTwits semantic terms’ trading behavior in financial markets: An effective application of decision tree algorithms. Expert Systems with Applications, 42(23), 9192–9210.
Paper not yet in RePEc: Add citation now
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. The Journal of Business, 53(1), 61–65.
Pontiff, J. (2006). Costly arbitrage and the myth of idiosyncratic risk. Journal of Accounting and Economics, 42, 35–52.
- Rakowski, D. A., Shirley, S. E., & Stark, J. R. (2018). Is all that Twitters gold? Social media attention, stock returns, and the spread of information (Working Paper). University of Texas at Arlington and Middle Tennessee State University.
Paper not yet in RePEc: Add citation now
Ranco, G., Aleksovski, D., Caldarelli, G., GrÄar, M., & MozetiÄ, I. (2015). The effects of Twitter sentiment on stock price returns. PLoS One, 10(9):e0138441.
- Renault, T (2017b). Market manipulation and suspicious stock recommendations on social media. Working paper, IESEG School of Management.
Paper not yet in RePEc: Add citation now
Renault, T. (2017a). Intraday online investor sentiment and return patterns in the US stock market. Journal of Banking & Finance, 84, 25–40.
- Shao, C., Ciampaglia, G. L., Varol, O., Yang, K. C., Flammini, A., & Menczer, F. (2018). The spread of lowâ€credibility content by social bots. Nature Communications, 9, 4787.
Paper not yet in RePEc: Add citation now
Solomon, D. H., Soltes, E., & Sosyura, D. (2014). Winners in the spotlight: Media coverage of fund holdings as a driver of flows. Journal of Financial Economics, 113(1), 53–72.
Sprenger, T. O., Sandner, P. G., Tumasjan, A., & Welpe, I. M. (2014a). News or noise? Using Twitter to identify and understand companyâ€specific news flow. Journal of Business Finance & Accounting, 41, 791–830.
Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014b). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926–957.
- Stukal, D., Sanovich, S., Bonneau, R., & Tucker, J. A. (2017). Detecting bots on Russian political Twitter. Big Data, 5(4), 310–324.
Paper not yet in RePEc: Add citation now
Tetlock, P. C. (2010). Does public financial news resolve asymmetric information? Review of Financial Studies, 23(9), 3520–3557.
Tetlock, P. C., Saarâ€Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. Journal of Finance, 63(3), 1437–1467.
- Tumarkin, R., & Whitelaw, R. F. (2001). News or noise? Internet postings and stock prices. Financial Analysts Journal, 57(3), 41–51.
Paper not yet in RePEc: Add citation now
- US Intelligence Committee. (2018). Open hearing: Worldwide threats hearing. Retrieved from https://www.intelligence.senate.gov/hearings/openâ€hearingâ€worldwideâ€threatsâ€hearingâ€1.
Paper not yet in RePEc: Add citation now
- Wysocki, P. D. (1998). Cheap talk on the web: The determinants of postings on stock message boards (Working Paper No. 98025). University of Michigan Business School.
Paper not yet in RePEc: Add citation now
- Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting stock market indicators through Twitter ‘I hope it is not as bad as I fear.’. Procedia – Social and Behavioral Sciences, 26, 55–62.
Paper not yet in RePEc: Add citation now