- Achyutha, P. N., Chaudhury, S., Bose, S. C., Kler, R., Surve, J., & Kaliyaperumal, K. (2022). User classification and stock market‐based recommendation engine based on machine learning and Twitter analysis. Mathematical Problems in Engineering, 2022, 4644855.
Paper not yet in RePEc: Add citation now
Adekoya, O., Oliyide, J., Asl, M., & Jalalifar, S. (2021). Financing the green projects: Market efficiency and volatility persistence of green versus conventional bonds, and the comparative effects of health and financial crises. International Review of Financial Analysis, 78, 101954.
- Aharon, D. Y., Demir, E., Lau, C. K. M., & Zaremba, A. (2022). Twitter‐based uncertainty and cryptocurrency returns. Research in International Business and Finance, 59, 101546.
Paper not yet in RePEc: Add citation now
- Aizawa, A. (2003). An information‐theoretic perspective of tf‐idf measures. Information Processing & Management, 39(1), 45–65.
Paper not yet in RePEc: Add citation now
Al‐Yahyaee, K. H., Mensi, W., Ko, H.‐U., Yoon, S.‐M., & Kang, S. H. (2020). Why cryptocurrency markets are inefficient: The impact of liquidity and volatility. The North American Journal of Economics and Finance, 52, 101168.
- Alamgir, F., & Amin, S. (2021). The nexus between oil price and stock market: Evidence from South Asia. Energy Reports, 7, 693–703.
Paper not yet in RePEc: Add citation now
Angelico, C., Marcucci, J., Miccoli, M., & Quarta, F. (2022). Can we measure inflation expectations using Twitter? Journal of Econometrics, 228(2), 259–277.
Ante, L. (2023). How Elon Musk's Twitter activity moves cryptocurrency markets. Technological Forecasting and Social Change, 186, 122112.
- Arias, M., Arratia, A., & Xuriguera, R. (2014). Forecasting with Twitter data. ACM Transactions on Intelligent Systems and Technology (TIST), 5(1), 1–24.
Paper not yet in RePEc: Add citation now
- Axios. (2018, December 27). Cryptocurrency dreams went bust in 2018. Axios. https://www.axios.com/2018/12/27/cryptocurrencies‐fall‐2018‐bitcoin‐blockchain.
Paper not yet in RePEc: Add citation now
- Bakeman, R., McArthur, D., Quera, V., & Robinson, B. F. (1997). Detecting sequential patterns and determining their reliability with fallible observers. Psychological Methods, 2(4), 357–370.
Paper not yet in RePEc: Add citation now
- Bali, T. G., Beckmeyer, H., Moerke, M., & Weigert, F. (2023). Predicting option returns with machine learning and big data. Review of Financial Studies, 36, 3548–3602.
Paper not yet in RePEc: Add citation now
Banerjee, A. K. (2022). You sneeze, and the markets are paranoid: The fear, uncertainty and distress sentiments impact of the COVID‐19 pandemic on the stock–bond correlation. The Journal of Risk Finance, 23(5), 652–668.
- Bartov, E., Faurel, L., & Mohanram, P. (2018). Can Twitter help predict firm‐level earnings and stock returns? The Accounting Review, 93(3), 25–57.
Paper not yet in RePEc: Add citation now
Basse, T., Klein, T., Vigne, S. A., & Wegener, C. (2021). U.S. stock prices and the dot.com‐bubble: Can dividend policy rescue the efficient market hypothesis? Journal of Corporate Finance, 67, 101892.
Basu, S. (1977). Investment performance of common stocks in relation to their price‐earnings ratios: A test of the efficient market hypothesis. The Journal of Finance, 32(3), 663–682.
Behrendt, S., & Schmidt, A. (2018). The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual‐level stock return volatility. Journal of Banking & Finance, 96, 355–367.
- Bianchi, F., Gómez‐Cram, R., Kind, T., & Kung, H. (2023). Threats to central bank independence: High‐frequency identification with Twitter. Journal of Monetary Economics, 135, 37–54.
Paper not yet in RePEc: Add citation now
- Bing, L., Chan, K. C., & Ou, C. (2014). Public sentiment analysis in Twitter data for prediction of a company's stock price movements. In 2014 IEEE 11th International Conference on e‐Business Engineering (pp. 232–239). IEEE.
Paper not yet in RePEc: Add citation now
- Blankespoor, E., Miller, G. S., & White, H. D. (2014). The role of dissemination in market liquidity: Evidence from firms' use of Twitter. The Accounting Review, 89(1), 79–112.
Paper not yet in RePEc: Add citation now
- Blei, D., Ng, A., & Jordan, M. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Paper not yet in RePEc: Add citation now
- Bloomberg. (2010, December 22). Hedge fund will track Twitter to predict stock moves. Bloomberg.com. https://www.bloomberg.com/news/articles/2010‐12‐22/hedge‐fund‐will‐track‐twitter‐to‐predict‐stockmarket‐movements.
Paper not yet in RePEc: Add citation now
- Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.
Paper not yet in RePEc: Add citation now
- Busse, J. A., & Green, T. C. (2002). Market efficiency in real time. Journal of Financial Economics, 65(3), 415–437.
Paper not yet in RePEc: Add citation now
- Chen, C. (2017). Improved tfidf in big news retrieval: An empirical study. Pattern Recognition Letters, 93, 113–122.
Paper not yet in RePEc: Add citation now
- Chordia, T., Roll, R., & Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87(2), 249–268.
Paper not yet in RePEc: Add citation now
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.
Paper not yet in RePEc: Add citation now
Conlon, T., & McGee, R. (2020). Safe haven or risky hazard? Bitcoin during the Covid‐19 bear market. Finance Research Letters, 35, 101607.
- Conway, B. A., Kenski, K., & Wang, D. (2015). The rise of Twitter in the political campaign: Searching for intermedia agenda‐setting effects in the presidential primary. Journal of Computer‐Mediated Communication, 20(4), 363–380.
Paper not yet in RePEc: Add citation now
Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34.
- de Finetti, B. (1975). Theory of probability: A critical introductory treatment. Wiley.
Paper not yet in RePEc: Add citation now
Dimson, E., & Mussavian, M. (1998). A brief history of market efficiency. European Financial Management, 4(1), 91–103.
Dong, X., Li, Y., Rapach, D. E., & Zhou, G. (2022). Anomalies and the expected market return. The Journal of Finance, 77(1), 639–681.
- Drobetz, W., Hollstein, F., Otto, T., & Prokopczuk, M. (2023). Estimating stock market betas via machine learning. Journal of Financial and Quantitative Analysis, 1–56.
Paper not yet in RePEc: Add citation now
El Montasser, G., Charfeddine, L., & Benhamed, A. (2022). Covid‐19, cryptocurrencies bubbles and digital market efficiency: Sensitivity and similarity analysis. Finance Research Letters, 46, 102362.
- El‐Haj, M., & Ogden, A. (2022). Financial narrative summarisation using a hybrid TF‐IDF and clustering summariser: AO‐Lancs system at FNS 2022. In Proceedings of the 4th Financial Narrative Processing Workshop@ LREC2022 (pp. 79–82).
Paper not yet in RePEc: Add citation now
- Evangelopoulos, N., Magro, M. J., & Sidorova, A. (2012). The dual micro/macro informing role of social network sites: Can Twitter macro messages help predict stock prices? Informing Science, 15, 247–269.
Paper not yet in RePEc: Add citation now
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417.
- Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural language processing in accounting, auditing and finance: A synthesis of the literature with a roadmap for future research. Intelligent Systems in Accounting, Finance and Management, 23(3), 157–214.
Paper not yet in RePEc: Add citation now
Frino, A., Xu, C., & Zhou, Z. I. (2022). Are option traders more informed than twitter users? A PVAR analysis. Journal of Futures Markets, 42(9), 1755–1771.
- FT. (2011, May 8). Twitter research promises trading success. FT.com. https://www.ft.com/content/fd34524a‐782c‐11e0‐b90e‐00144feabdc0.
Paper not yet in RePEc: Add citation now
- FT. (2012, May 24). Last tweet for Derwent's Absolute Return. FT.com. https://www.ft.com/content/d5d9c3f8‐a5bf‐11e1‐b77a‐00144feabdc0.
Paper not yet in RePEc: Add citation now
- FT. (2023, February 23). The two sides of crypto in Ukraine war. FT.com. https://www.ft.com/content/a3b59f3b‐d0b3‐4047‐af71‐c8ef61aa8d58.
Paper not yet in RePEc: Add citation now
- Garcia, J. (2022). Analysts' stock ratings and the predictive value of news and twitter sentiment. Investment Analysts Journal, 51, 1–17.
Paper not yet in RePEc: Add citation now
- Groß‐Klußmann, A., König, S., & Ebner, M. (2019). Buzzwords build momentum: Global financial twitter sentiment and the aggregate stock market. Expert Systems with Applications, 136, 171–186.
Paper not yet in RePEc: Add citation now
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
- Guo, A., & Yang, T. (2016). Research and improvement of feature words weight based on TFIDF algorithm. In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference(pp. 415–419). IEEE.
Paper not yet in RePEc: Add citation now
- Hagen, L. (2018). Content analysis of e‐petitions with topic modeling: How to train and evaluate LDA models? Information Processing & Management, 54(6), 1292–1307.
Paper not yet in RePEc: Add citation now
- Hatemi, A. (2012). Asymmetric causality tests with an application. Empirical Economics, 43(1), 447–456.
Paper not yet in RePEc: Add citation now
Herrera, G. P., Constantino, M., Su, J.‐J., & Naranpanawa, A. (2022). Renewable energy stocks forecast using Twitter investor sentiment and deep learning. Energy Economics, 114, 106285.
Jalan, A., Matkovskyy, R., Urquhart, A., & Yarovaya, L. (2023). The role of interpersonal trust in cryptocurrency adoption. Journal of International Financial Markets, Institutions and Money, 83, 101715.
- Jarrow, R., & Larsson, M. (2012). The meaning of market efficiency. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 22(1), 1–30.
Paper not yet in RePEc: Add citation now
- Jing, L., Huang, H., & Shi, H. (2002). Improved feature selection approach tfidf in text mining. In Proceedings of the International Conference on Machine Learning and Cybernetics (Vol. 2, pp. 944–946). IEEE.
Paper not yet in RePEc: Add citation now
Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., & Kapadia, S. (2022). Making text count: Economic forecasting using newspaper text. Journal of Applied Econometrics, 37(5), 896–919.
- Karlemstrand, R., & Leckström, E. (2021). Using Twitter attribute information to predict stock prices. arXiv preprint arXiv:2105.01402. https://doi.org/10.48550/arXiv.2105.01402.
Paper not yet in RePEc: Add citation now
Khalfaoui, R., Gozgor, G., & Goodell, J. W. (2023). Impact of Russia‐Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis. Finance Research Letters, 52, 103365.
- Kim, D., Seo, D., Cho, S., & Kang, P. (2019). Multi‐co‐training for document classification using various document representations: TF‐IDF, LDA, and Doc2Vec. Information Sciences, 477, 15–29.
Paper not yet in RePEc: Add citation now
- Kim, E. H.‐J., Jeong, Y. K., Kim, Y., Kang, K. Y., & Song, M. (2016). Topic‐based content and sentiment analysis of Ebola virus on Twitter and in the news. Journal of Information Science, 42(6), 763–781.
Paper not yet in RePEc: Add citation now
- Korenius, T., Laurikkala, J., Järvelin, K., & Juhola, M. (2004). Stemming and lemmatization in the clustering of Finnish text documents. In Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management (pp. 625–633).
Paper not yet in RePEc: Add citation now
Kraaijeveld, O., & De Smedt, J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 101188.
Kyriazis, N. A. (2019). A survey on empirical findings about spillovers in cryptocurrency markets. Journal of Risk and Financial Management, 12(4), 170.
- Lachanski, M., & Pav, S. (2017). Shy of the character limit: “Twitter mood predicts the stock market” revisited. Econ Journal Watch, 14(3), 302–345.
Paper not yet in RePEc: Add citation now
- Lee, N., Kim, E., & Kwon, O. (2018). Combining TF‐IDF and LDA to generate flexible communication for recommendation services by a humanoid robot. Multimedia Tools and Applications, 77, 5043–5058.
Paper not yet in RePEc: Add citation now
Lehmann, B. N. (1990). Fads, martingales, and market efficiency. The Quarterly Journal of Economics, 105(1), 1–28.
- Li, C., Lu, Y., Wu, J., Zhang, Y., Xia, Z., Wang, T., Yu, D., Chen, X., Liu, P., & Guo, J. (2018‐04). LDA meets Word2Vec: A novel model for academic abstract clustering. In Companion Proceedings of the Web Conference 2018 (pp. 1699–1706).
Paper not yet in RePEc: Add citation now
Lim, K. P., & Brooks, R. (2011). The evolution of stock market efficiency over time: A survey of the empirical literature. Journal of Economic Surveys, 25(1), 69–108.
- Lim, K. W., Chen, C., & Buntine, W. (2016). Twitter‐network topic model: A full Bayesian treatment for social network and text modeling. arXiv preprint arXiv:1609.06791. https://doi.org/10.48550/arXiv.1609.06791.
Paper not yet in RePEc: Add citation now
- Lo, A. W. (2004). The adaptive markets hypothesis. The Journal of Portfolio Management, 30(5), 15–29.
Paper not yet in RePEc: Add citation now
Long, S., Lucey, B., Xie, Y., & Yarovaya, L. (2023). “I just like the stock”: The role of Reddit sentiment in the GameStop share rally. Financial Review, 58(1), 19–37.
López‐Martín, C., Benito Muela, S., & Arguedas, R. (2021). Efficiency in cryptocurrency markets: New evidence. Eurasian Economic Review, 11(3), 403–431.
Lüdering, J., & Tillmann, P. (2020). Monetary policy on Twitter and asset prices: Evidence from computational text analysis. The North American Journal of Economics and Finance, 51, 100875.
- Mao, Y., Wei, W., Wang, B., & Liu, B. (2012). Correlating S&P 500 stocks with Twitter data. In Proceedings of the First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research (pp. 69–72).
Paper not yet in RePEc: Add citation now
- Maqsood, U., Khuhawar, F. Y., Talpur, S., Jaskani, F. H., & Memon, A. A. (2022). Twitter mining based forecasting of cryptocurrency using sentimental analysis of tweets. In 2022 Global Conference on Wireless and Optical Technologies (GCWOT) (pp. 1–6). IEEE.
Paper not yet in RePEc: Add citation now
- Mazur, M. (2022). Misperceptions of Bitcoin volatility. The Journal of Alternative Investments, 24(4), 33–44.
Paper not yet in RePEc: Add citation now
- Meilǎ, M., & Heckerman, D. (2001). An experimental comparison of model‐based clustering methods. Machine Learning, 42(1), 9–29.
Paper not yet in RePEc: Add citation now
Mensi, W., Lee, Y., Vo, X., & Yoon, S. (2021). Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil consumers? Evidence from an asymmetric MF‐DFA approach. The North American Journal of Economics and Finance, 57, 101446.
Mnif, E., Jarboui, A., & Mouakhar, K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Finance Research Letters, 36, 101647.
Momtaz, P. P. (2021). The pricing and performance of cryptocurrency. The European Journal of Finance, 27(4‐5), 367–380.
Navratil, R., Taylor, S., & Vecer, J. (2021). On equity market inefficiency during the COVID‐19 pandemic. International Review of Financial Analysis, 77, 101820.
- Okoroafor, U., & Leirvik, T. (2021). Time varying market efficiency in the Brent and WTI crude market. Finance Research Letters, 45, 102191.
Paper not yet in RePEc: Add citation now
- Ozkan, O. (2021). Impact of COVID‐19 on stock market efficiency: Evidence from developed countries. Research in International Business and Finance, 58, 101445.
Paper not yet in RePEc: Add citation now
- Ozyurt, B., & Akcayol, M. (2021). A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS‐LDA. Expert Systems with Applications, 168, 114231.
Paper not yet in RePEc: Add citation now
- Pavlinek, M., & Podgorelec, V. (2017). Text classification method based on self‐training and LDA topic models. Expert Systems with Applications, 80, 83–93.
Paper not yet in RePEc: Add citation now
- Pietrych, L., Sandubete, J. E., & Escot, L. (2021). Solving the chaos model‐data paradox in the cryptocurrency market. Communications in Nonlinear Science and Numerical Simulation, 102, 105901.
Paper not yet in RePEc: Add citation now
Polyzos, E. (2023). Inflation and the war in Ukraine: Evidence using impulse response functions on economic indicators and Twitter sentiment. Research in International Business and Finance, 66, 102044. https://doi.org/10.2139/ssrn.4082899.
Polyzos, E., & Wang, F. (2022). Twitter and market efficiency in energy markets: Evidence using Lda clustered topic extraction. Energy Economics, 114, 106264.
- Polyzos, E., Samitas, A., & Kampouris, I. (2022). Quantifying market efficiency: Information dissemination through social media. Available at SSRN 4082899.
Paper not yet in RePEc: Add citation now
- Qureshi, K., & Zaman, T. (2023). Social media engagement and cryptocurrency performance. PLoS ONE, 18(5), e0284501. https://doi.org/10.1371/journal.pone.0284501.
Paper not yet in RePEc: Add citation now
Reboredo, J. C., & Ugolini, A. (2018). The impact of Twitter sentiment on renewable energy stocks. Energy Economics, 76, 153–169.
Rösch, D. M., Subrahmanyam, A., & Van Dijk, M. A. (2017). The dynamics of market efficiency. The Review of Financial Studies, 30(4), 1151–1187.
- Roşu, I. (2019). Fast and slow informed trading. Journal of Financial Markets, 43, 1–30.
Paper not yet in RePEc: Add citation now
- Rubbaniy, G., Polyzos, E., Rizvi, S. K. A., & Tessema, A. (2021). Covid‐19, lockdowns and herding towards a cryptocurrency market‐specific implied volatility index. Economics Letters, 207, 110017.
Paper not yet in RePEc: Add citation now
- Salton, G., & McGill, M. (Eds.). (1983). Introduction to modern information retrieval. McGraw‐Hill.
Paper not yet in RePEc: Add citation now
Sarkodie, S. A., Ahmed, M. Y., & Owusu, P. A. (2022). Covid‐19 pandemic improves market signals of cryptocurrencies—evidence from Bitcoin, Bitcoin Cash, Ethereum, and Litecoin. Finance Research Letters, 44, 102049.
- Schwert, G. W. (2003). Anomalies and market efficiency. In Handbook of the economics of finance (Vol. 1, pp. 939–974). Elsevier.
Paper not yet in RePEc: Add citation now
Shahzad, S. J. H., Anas, M., & Bouri, E. (2022). Price explosiveness in cryptocurrencies and Elon Musk's tweets. Finance Research Letters, 47, 102695.
- Shelar, A., & Huang, C.‐y. (2018). Analyzing relationship: Twitter tweet frequency with the stock prices of telecom companies. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence (pp. 113–116).
Paper not yet in RePEc: Add citation now
- Shou, M., Bao, X., & Yu, J. (2023). Predictions on usefulness and popularity of online reviews: Evidence from mobile phones for older adults. Information Technology & People, 36(7), 2633–2660.
Paper not yet in RePEc: Add citation now
Sigaki, H. Y., Perc, M., & Ribeiro, H. V. (2019). Clustering patterns in efficiency and the coming‐of‐age of the cryptocurrency market. Scientific Reports, 9(1), 1–9.
- Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Physical Therapy, 85(3), 257–268.
Paper not yet in RePEc: Add citation now
- Thakkar, A., & Chaudhari, K. (2020). Predicting stock trend using an integrated term frequency–inverse document frequency‐based feature weight matrix with neural networks. Applied Soft Computing, 96, 106684.
Paper not yet in RePEc: Add citation now
Tong, Z., Goodell, J. W., & Shen, D. (2022). Assessing causal relationships between cryptocurrencies and investor attention: New results from transfer entropy methodology. Finance Research Letters, 50, 103351.
- Urquhart, A., & McGroarty, F. (2014). Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long‐run US data. International Review of Financial Analysis, 35, 154–166.
Paper not yet in RePEc: Add citation now
- Vidal‐Tomás, D. (2022). All the frequencies matter in the Bitcoin market: An efficiency analysis. Applied Economics Letters, 29(3), 212–218.
Paper not yet in RePEc: Add citation now
- Vidal‐Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019). Weak efficiency of the cryptocurrency market: A market portfolio approach. Applied Economics Letters, 26(19), 1627–1633.
Paper not yet in RePEc: Add citation now
Vijh, A. M., & Wang, J. (2022). Negative returns on addition to the S&P 500 index and positive returns on deletion? New evidence on the attractiveness of S&P 500 versus S&P 400 indexes. Financial Management, 51(4), 1127–1164.
Wei, W. C. (2018). Liquidity and market efficiency in cryptocurrencies. Economics Letters, 168, 21–24.
- Yaya, O. S., Ogbonna, A. E., Mudida, R., & Abu, N. (2021). Market efficiency and volatility persistence of cryptocurrency during pre‐and post‐crash periods of bitcoin: Evidence based on fractional integration. International Journal of Finance & Economics, 26(1), 1318–1335.
Paper not yet in RePEc: Add citation now
- Yildirim, H. (2021). Testing bubbles formation at real‐time commodity prices. Journal of Public Affairs, 21(3), e2243.
Paper not yet in RePEc: Add citation now
- Zhang, F., Gao, W., & Fang, Y. (2019). News title classification based on sentence‐LDA model and word embedding. In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (pp. 237–240). IEEE.
Paper not yet in RePEc: Add citation now
Zhou, X., Zhou, H., & Long, H. (2023). Forecasting the equity premium: Do deep neural network models work? Modern Finance, 1(1), 1–11.
- Zimbra, D., Abbasi, A., Zeng, D., & Chen, H. (2018). The state‐of‐the‐art in Twitter sentiment analysis: A review and benchmark evaluation. ACM Transactions on Management Information Systems (TMIS), 9(2), 1–29.
Paper not yet in RePEc: Add citation now