Apergis, N., & Ozturk, I. (2015). Testing environmental Kuznets curve hypothesis in Asian countries. Ecological Indicators, 52, 16–22. https://doi.org/10.1016/j.ecolind.2014.11.026.
Arranz, C. F. A., Kwong, C., & Sena, V. (2023). The effect of consumption and production policies on circular economy business models: A machine learning approach. Journal of Industrial Ecology, 27, 1089–1104. https://doi.org/10.1111/jiec.13397.
- Bao, Y., Huang, Z., Wang, H., Yin, G., Zhou, X., & Gao, Y. (2023). High‐resolution quantification of building stock using multi‐source remote sensing imagery and deep learning. Journal of Industrial Ecology, 27(1), 350–361. https://doi.org/10.1111/jiec.13356.
Paper not yet in RePEc: Add citation now
- Bartos, P. J. (2007). Is mining a high‐tech industry? Resources Policy, 32(4), 149–158. https://doi.org/10.1016/j.resourpol.2007.07.001.
Paper not yet in RePEc: Add citation now
- Bashir, M. F., Ma, B., Bashir, M. A., Bilal, & Shahzad, L. (2021). Scientific data‐driven evaluation of academic publications on environmental Kuznets curve. Environmental Science and Pollution Research, 28(14), 16982–16999. https://doi.org/10.1007/s11356‐021‐13110‐6.
Paper not yet in RePEc: Add citation now
- Bhuwalka, K., Kirchain, R. E., Olivetti, E. A., & Roth, R. (2022). Quantifying the drivers of long‐term prices in materials supply chains. Journal of Industrial Ecology, 27, 141–154. https://doi.org/10.1111/jiec.13355.
Paper not yet in RePEc: Add citation now
- Blomberg, J. (2007). Essays on the economics of the aluminium industry. Luleå tekniska universitet.
Paper not yet in RePEc: Add citation now
- Blomberg, J., & Hellmer, S. (2000). Short‐run demand and supply elasticities in the West European market for secondary aluminium. Resources Policy, 26(1), 39–50. https://doi.org/10.1016/S0301‐4207(00)00015‐5.
Paper not yet in RePEc: Add citation now
- Buchholz, P., Schumacher, A., & Al Barazi, S. (2022). Big data analyses for real‐time tracking of risks in the mineral raw material markets: Implications for improved supply chain risk management. Mineral Economics, 35(3), 701–744. https://doi.org/10.1007/s13563‐022‐00337‐z.
Paper not yet in RePEc: Add citation now
Calvo, G., Mudd, G., Valero, A., & Valero, A. (2016). Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources, 5(4), 4. https://doi.org/10.3390/resources5040036.
- Carlsen, E. H. (1980). Aluminum recycling coefficients. Business Economics, 15(1), 41–46.
Paper not yet in RePEc: Add citation now
Chen, J., Luo, Q., Tu, Y., Ren, X., & Naderi, N. (2023). Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data. Resources Policy, 85, 104037. https://doi.org/10.1016/j.resourpol.2023.104037.
- Chen, W.‐Q., & Graedel, T. E. (2012). Anthropogenic cycles of the elements: A critical review. Environmental Science & Technology, 46(16), 8574–8586.
Paper not yet in RePEc: Add citation now
- Cullen, J. M., & Cooper, D. R. (2022). Material flows and efficiency. Annual Review of Materials Research, 52(1), 525–559. https://doi.org/10.1146/annurev‐matsci‐070218‐125903.
Paper not yet in RePEc: Add citation now
- Dahl, C. A. (2020). Dahl Mineral Elasticity of Demand and Supply Database (MEDS). Division of Economics and Business Working Paper Series. http://econbus‐papers.mines.edu/working‐papers/wp202002v2.pdf.
Paper not yet in RePEc: Add citation now
- Damuth, R. J. (2010). Iron and steel scrap accumulation and availability as of December 31, 2009. Nathan Associates Inc.
Paper not yet in RePEc: Add citation now
- Davis, C., & Aid, G. (2022). Machine learning‐assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions. Journal of Industrial Ecology, 26(1), 27–43. https://doi.org/10.1111/jiec.13245.
Paper not yet in RePEc: Add citation now
Donati, F., Dente, S. M. R., Li, C., Vilaysouk, X., Froemelt, A., Nishant, R., Liu, G., Tukker, A., & Hashimoto, S. (2022). The future of artificial intelligence in the context of industrial ecology. Journal of Industrial Ecology, 26(4), 1175–1181. https://doi.org/10.1111/jiec.13313.
Ebrahimi, B., Rosado, L., & Wallbaum, H. (2022). Machine learning‐based stocks and flows modeling of road infrastructure. Journal of Industrial Ecology, 26(1), 44–57. https://doi.org/10.1111/jiec.13232.
Ehrlich, L. G. (2018). What drives nickel prices: A structural VAR approach. HWWI Research Paper, No. 186. Hamburgisches WeltWirtschaftsInstitut (HWWI).
Ericsson, M., Drielsma, J., Humphreys, D., Storm, P., & Weihed, P. (2019). Why current assessments of ‘future efforts’ are no basis for establishing policies on material use—A response to research on ore grades. Mineral Economics, 32(1), 111–121. https://doi.org/10.1007/s13563‐019‐00175‐6.
- European Critical Raw Materials Act, 160 COM (2023). (2023). https://single‐market‐economy.ec.europa.eu/publications/european‐critical‐raw‐materials‐act_en.
Paper not yet in RePEc: Add citation now
- Fernandez, V. (2018). Price and income elasticity of demand for mineral commodities. Resources Policy, 59, 160–183. https://doi.org/10.1016/j.resourpol.2018.06.013.
Paper not yet in RePEc: Add citation now
Fisher, F. M., Cootner, P. H., & Baily, M. N. (1972). An econometric model of the world copper industry. The Bell Journal of Economics and Management Science, 3(2), 568. https://doi.org/10.2307/3003038.
Fisher, L. A., & Owen, A. D. (1981). An economic model of the US aluminium market. Resources Policy, 7(3), 150–160.
- Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv:1807.02811. http://arxiv.org/abs/1807.02811.
Paper not yet in RePEc: Add citation now
- Froemelt, A., Buffat, R., & Hellweg, S. (2020). Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts. Journal of Industrial Ecology, 24(3), 639–652. https://doi.org/10.1111/jiec.12969.
Paper not yet in RePEc: Add citation now
- Fu, X. (2019). Assessing byproduct mining and metal recycling as indicators of material criticality. Massachusetts Institute of Technology.
Paper not yet in RePEc: Add citation now
Fu, X., Ueland, S. M., & Olivetti, E. (2017). Econometric modeling of recycled copper supply. Resources, Conservation and Recycling, 122, 219–226. https://doi.org/10.1016/j.resconrec.2017.02.012.
Gleich, B., Achzet, B., Mayer, H., & Rathgeber, A. (2013). An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy, 38(3), 350–362. https://doi.org/10.1016/j.resourpol.2013.03.011.
- Grimes, S., Donaldson, J., & Gomez, G. C. (2008). Report on the environmental benefits of recycling. Bureau of International Recycling, 1, 23–24.
Paper not yet in RePEc: Add citation now
- Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., & Shcherbatyi, I. (2020). scikit‐optimize/scikit‐optimize: V0. 8.1 [Python]. scikit‐optimize contributors (BSD License).
Paper not yet in RePEc: Add citation now
Hojman, D. E. (1981). An econometric model of the international bauxite‐aluminium economy. Resources Policy, 7(2), 87–102. https://doi.org/10.1016/0301‐4207(81)90032‐5.
- IEA. (2021). Mineral requirements for clean energy transitions—The role of critical minerals in clean energy transitions—Analysis. International Energy Agency. https://www.iea.org/reports/the‐role‐of‐critical‐minerals‐in‐clean‐energy‐transitions/mineral‐requirements‐for‐clean‐energy‐transitions.
Paper not yet in RePEc: Add citation now
- Inflation Reduction Act of. (2022). http://www.congress.gov/.
Paper not yet in RePEc: Add citation now
- Intarapravich, D. (1989). A dynamic econometric analysis integrating long‐ and short‐run adjustments in the mineral industry [West Virginia University]. ProQuest Dissertations & Theses Global. https://www.proquest.com/pqdtglobal/docview/303739054/EAD16D9AF8014434PQ/1.
Paper not yet in RePEc: Add citation now
- Jordan, B. W. (2017). Companions and competitors: Joint metal‐supply relationships in gold, silver, copper, lead and zinc mines. Resource and Energy Economics, 49, 233–250. https://doi.org/10.1016/j.reseneeco.2017.05.003.
Paper not yet in RePEc: Add citation now
- Khoo, J. Z., Haque, N., Woodbridge, G., McDonald, R., & Bhattacharya, S. (2017). A life cycle assessment of a new laterite processing technology. Journal of Cleaner Production, 142, 1765–1777. https://doi.org/10.1016/j.jclepro.2016.11.111.
Paper not yet in RePEc: Add citation now
- Lala, A., Moyo, M., Rehbach, S., & Sellschop, R. (2014). Productivity in mining operations: Reversing the downward trend. McKinsey & Company. https://www.mckinsey.com/industries/metals‐and‐mining/our‐insights/productivity‐in‐mining‐operations‐reversing‐the‐downward‐trend.
Paper not yet in RePEc: Add citation now
- Larrea‐Gallegos, G., & Vázquez‐Rowe, I. (2022). Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects. Journal of Industrial Ecology, 26(1), 225–239. https://doi.org/10.1111/jiec.13185.
Paper not yet in RePEc: Add citation now
- Marion, T. M. P. (2019). Assessing the long‐term attractiveness of mining a commodity based on the structure of its industry [Thesis]. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/122188.
Paper not yet in RePEc: Add citation now
- Merwin, M. (2022). Indonesia's nickel export ban: Impacts on supply chains and the energy transition. The National Bureau of Asian Research (NBR). https://www.nbr.org/publication/indonesias‐nickel‐export‐ban‐impacts‐on‐supply‐chains‐and‐the‐energy‐transition/.
Paper not yet in RePEc: Add citation now
- Nassar, N. T., Graedel, T. E., & Harper, E. M. (2015). By‐product metals are technologically essential but have problematic supply. Science Advances, 1(3), e1400180. https://doi.org/10.1126/sciadv.1400180.
Paper not yet in RePEc: Add citation now
- Pearson, E. S. (1938). The probability integral transformation for testing goodness of fit and combining independent tests of significance. Biometrika, 30(1/2), 134–148. https://doi.org/10.2307/2332229.
Paper not yet in RePEc: Add citation now
- Pustov, A., Malanichev, A., & Khobotilov, I. (2013). Long‐term iron ore price modeling: Marginal costs vs. incentive price. Resources Policy, 38(4), 558–567. https://doi.org/10.1016/j.resourpol.2013.09.003.
Paper not yet in RePEc: Add citation now
Rafati, M. R. (1982). An econometric model of the world nickel industry. Kiel Working Paper, No. 160, Kiel Institute of World Economics (IfW).
- Ross, A., Croft, A., Bujakera, S., & Paravicini, G. (2018). Congo declares cobalt “strategic”, nearly tripling royalty rate. Reuters. https://www.reuters.com/article/us‐congo‐cobalt‐idUSKBN1O220D.
Paper not yet in RePEc: Add citation now
- Ryter, J., Bhuwalka, K., O'Rourke, M., Montanelli, L., Cohen‐Tanugi, D., Roth, R., & Olivetti, E. (2024). Source data: Understanding key mineral supply chain dynamics using economics‐informed material flow analysis and Bayesian optimization. Zenodo. https://doi.org/10.5281/zenodo.8327490.
Paper not yet in RePEc: Add citation now
Ryter, J., Fu, X., Bhuwalka, K., Roth, R., & Olivetti, E. (2022). Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model. Journal of Industrial Ecology, 26(3), 1010–1024. https://doi.org/10.1111/jiec.13239.
Ryter, J., Fu, X., Bhuwalka, K., Roth, R., & Olivetti, E. A. (2021). Emission impacts of China's solid waste import ban and COVID‐19 in the copper supply chain. Nature Communications, 12(1), 3753. https://doi.org/10.1038/s41467‐021‐23874‐7.
Slade, M. E. (1980). The effects of higher energy prices and declining ore quality: Copper‐aluminium substitution and recycling in the USA. Resources Policy, 6(3), 223–239. https://doi.org/10.1016/0301‐4207(80)90042‐2.
- Song, Y., Huang, J., Zhang, Y., & Wang, Z. (2019). Drivers of metal consumption in China: An input‐output structural decomposition analysis. Resources Policy, 63, 101421. https://doi.org/10.1016/j.resourpol.2019.101421.
Paper not yet in RePEc: Add citation now
Streeck, J., Pauliuk, S., Wieland, H., & Wiedenhofer, D. (2023). A review of methods to trace material flows into final products in dynamic material flow analysis: From industry shipments in physical units to monetary input–output tables, Part 1. Journal of Industrial Ecology, 1(21), 436–456. https://doi.org/10.1111/jiec.13380.
- Sun, X., Ouyang, M., & Hao, H. (2022). Surging lithium price will not impede the electric vehicle boom. Joule, 6(8), 1738–1742. https://doi.org/10.1016/j.joule.2022.06.028.
Paper not yet in RePEc: Add citation now
- Tilton, J. E. (1992). Economics of the mineral industries. In H. L. Hartman (Ed.), SME mining engineering handbook (2nd ed., Vol. 1, pp. 47–62). Society for Mining, Metallurgy, and Exploration. Littleton, Colorado, USA.
Paper not yet in RePEc: Add citation now
- Topp, V., Soames, L., Parham, D., & Bloch, H. (2008). Productivity in the mining industry: Measurement and interpretation—Productivity Commission Staff Working Paper. Australian Government Productivity Commission. https://www.pc.gov.au/research/supporting/mining‐productivity.
Paper not yet in RePEc: Add citation now
- Valencia. (2005). An econometric study of the world copper industry. Colorado School of Mines. https://repository.mines.edu/bitstream/handle/11124/79515/T05984.pdf?sequence=1.
Paper not yet in RePEc: Add citation now
Valero, A., Valero, A., Calvo, G., Ortego, A., Ascaso, S., & Palacios, J.‐L. (2018). Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy, 159, 1175–1184. https://doi.org/10.1016/j.energy.2018.06.149.
- Vial, J. R. (1988). An econometric study of the world copper market [PhD theses]. University of Pennsylvania. https://www.proquest.com/docview/303707487/abstract/A020F78877A5429CPQ/1.
Paper not yet in RePEc: Add citation now
Vilaysouk, X., Saypadith, S., & Hashimoto, S. (2022). Semisupervised machine learning classification framework for material intensity parameters of residential buildings. Journal of Industrial Ecology, 26(1), 72–87. https://doi.org/10.1111/jiec.13174.
- Wang, H., Feng, K., Wang, P., Yang, Y., Sun, L., Yang, F., Chen, W.‐Q., Zhang, Y., & Li, J. (2023). China's electric vehicle and climate ambitions jeopardized by surging critical material prices. Nature Communications, 14(1), 1246. https://doi.org/10.1038/s41467‐023‐36957‐4.
Paper not yet in RePEc: Add citation now
- Watari, T., Nansai, K., & Nakajima, K. (2021). Major metals demand, supply, and environmental impacts to 2100: A critical review. Resources, Conservation and Recycling, 164, 105107. https://doi.org/10.1016/j.resconrec.2020.105107.
Paper not yet in RePEc: Add citation now
Xiarchos, I. M., & Fletcher, J. J. (2009). Price and volatility transmission between primary and scrap metal markets. Resources, Conservation and Recycling, 53(12), 664–673. https://doi.org/10.1016/j.resconrec.2009.04.020.
Yang, Z., Du, J., Lin, Y., Du, Z., Xia, L., Zhao, Q., & Guan, X. (2022). Increasing the energy efficiency of a data center based on machine learning. Journal of Industrial Ecology, 26(1), 323–335. https://doi.org/10.1111/jiec.13155.
- Yazici, B., & Yolacan, S. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310.
Paper not yet in RePEc: Add citation now
- Young, D. (1991). Productivity and metal mining: Evidence from copper‐mining firms. Applied Economics, 23(12), 1853–1859. https://doi.org/10.1080/00036849100000175.
Paper not yet in RePEc: Add citation now
- Young, E. (2021). Battery nickel bottlenecks: A material flow analysis of the impacts the energy transition will have on the nickel supply system. Norwegian University of Science and Technology.
Paper not yet in RePEc: Add citation now
Yuan, L., Lu, W., Xue, F., & Li, M. (2023). Building feature‐based machine learning regression to quantify urban material stocks: A Hong Kong study. Journal of Industrial Ecology, 27(1), 336–349. https://doi.org/10.1111/jiec.13348.
- Zhao, B., Shuai, C., Hou, P., Qu, S., & Xu, M. (2021). Estimation of unit process data for life cycle assessment using a decision tree‐based approach. Environmental Science & Technology, 55(12), 8439–8446. https://doi.org/10.1021/acs.est.0c07484.
Paper not yet in RePEc: Add citation now
Zhu, X., Ding, Q., & Chen, J. (2022). How does critical mineral trade pattern affect renewable energy development? The mediating role of renewable energy technological progress. Energy Economics, 112, 106164. https://doi.org/10.1016/j.eneco.2022.106164.
Zink, T., Geyer, R., & Startz, R. (2018). Toward estimating displaced primary production from recycling: A case study of U.S. aluminum. Journal of Industrial Ecology, 22(2), 314–326. https://doi.org/10.1111/jiec.12557.