Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3–30. https://doi.org/10.1257/jep.33.2.3.
Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. Journal of Economic Literature, 54(2), 442–492.
- Adler‐Milstein, J., Chen, J. H., & Dhaliwal, G. (2021). Next‐generation artificial intelligence for diagnosis: From predicting diagnostic labels to wayfinding. Journal of the American Medical Association, 326, 2467. https://doi.org/10.1001/jama.2021.22396.
Paper not yet in RePEc: Add citation now
Agarwal, R., Dugas, M., Gao, G., & Kannan, P. K. (2020). Emerging technologies and analytics for a new era of value‐centered marketing in healthcare. Journal of the Academy of Marketing Science, 48(1), 9–23. https://doi.org/10.1007/s11747-019-00692-4.
- Agarwal, R., Dugas, M., Ramaprasad, J., Luo, J., Li, G., & Gao, G. (2021). Socioeconomic privilege and political ideology are associated with racial disparity in COVID‐19 vaccination. Proceedings of the National Academy of Sciences United States of America, 118(33), e2107873118. https://doi.org/10.1073/pnas.2107873118.
Paper not yet in RePEc: Add citation now
Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 21(4), 796–809. https://doi.org/10.1287/isre.1100.0327.
Agarwal, R., Liu, C. W., & Prasad, K. (2019). Personal research, second opinions, and the diagnostic effort of experts. Journal of Economic Behavior & Organization, 158, 44–61.
- Agrawal, A., Gans, J. S., & Goldfarb, A. (2023). Artificial intelligence adoption and system‐wide change. Journal of Economics & Management Strategy.
Paper not yet in RePEc: Add citation now
- Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Press.
Paper not yet in RePEc: Add citation now
Agrawal, A., Gans, J., & Goldfarb, A. (2019). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.001.0001.
- Ahn, D., Almaatouq, A., Gulabani, M., & Hosanagar, K. (2021). Will we trust what we don't understand? Impact of model interpretability and outcome feedback on trust in AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3964332.
Paper not yet in RePEc: Add citation now
- AMA. (2022). AMA digital health care 2022 study findings: Education modules & resources. https://www.ama-assn.org/system/files/ama-digital-health-study.pdf.
Paper not yet in RePEc: Add citation now
Angst, C. M., Agarwal, R., Sambamurthy, V., & Kelley, K. (2010). Social contagion and information technology diffusion: The adoption of electronic medical records in US hospitals. Management Science, 56(8), 1219–1241.
- Araujo, V., Carvallo, A., Aspillaga, C., & Parra, D. (2020). On adversarial examples for biomedical NLP tasks. arXiv:2004.11157. https://doi.org/10.48550/arXiv.2004.11157.
Paper not yet in RePEc: Add citation now
- Arndt, B. G., Beasley, J. W., Watkinson, M. D., Temte, J. L., Tuan, W.‐J., Sinsky, C. A., & Gilchrist, V. J. (2017). Tethered to the EHR: primary care physician workload assessment using EHR event log data and time‐motion observations. The Annals of Family Medicine, 15(5), 419–426. https://doi.org/10.1370/afm.2121.
Paper not yet in RePEc: Add citation now
- Ashley, E. A. (2016). Towards precision medicine. Nature Reviews Genetics, 17(9), 507–522. https://doi.org/10.1038/nrg.2016.86.
Paper not yet in RePEc: Add citation now
Athey, S. (2018). The impact of machine learning on economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 507–547). University of Chicago Press. https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/impact-machine-learning-economics.
- Au‐Yeung, W.‐T. M., Sevakula, R. K., Sahani, A. K., Kassab, M., Boyer, R., Isselbacher, E. M., & Armoundas, A. A. (2021). Real‐time machine learning‐based intensive care unit alarm classification without prior knowledge of the underlying rhythm. European Heart Journal ‐ Digital Health, 2(3), 437–445. https://doi.org/10.1093/ehjdh/ztab058.
Paper not yet in RePEc: Add citation now
- Aubrey, A., & Godoy, M. (2016, August 3). 75 percent of Americans say they eat healthy—Despite evidence to the contrary. NPR. https://www.npr.org/sections/thesalt/2016/08/03/487640479/75-percent-of-americans-say-they-eat-healthy-despite-evidence-to-the-contrary.
Paper not yet in RePEc: Add citation now
Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3.
- Baird, A., & Maruping, L. M. (2021). The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts. MIS Quarterly, 45(1), 315–341.
Paper not yet in RePEc: Add citation now
- Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., & Biecek, P. (2021). dalex: Responsible machine learning with interactive explainability and fairness in Python. The Journal of Machine Learning Research, 22(1), 2149765.
Paper not yet in RePEc: Add citation now
- Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., & Horvitz, E. (2019). Updates in human‐AI teams: Understanding and addressing the performance/compatibility tradeoff. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 2429–2437.
Paper not yet in RePEc: Add citation now
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122–142. https://doi.org/10.1006/game.1995.1027.
- Bhatt, U., Andrus, M., Weller, A., & Xiang, A. (2020). Machine learning explainability for external stakeholders. arXiv:2007.05408. https://doi.org/10.48550/arXiv.2007.05408.
Paper not yet in RePEc: Add citation now
- Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34.
Paper not yet in RePEc: Add citation now
- Bigman, Y. E., Wilson, D., Arnestad, M. N., Waytz, A., & Gray, K. (2023). Algorithmic discrimination causes less moral outrage than human discrimination. Journal of Experimental Psychology: General, 152, 4–27. https://doi.org/10.1037/xge0001250.
Paper not yet in RePEc: Add citation now
Bjarnadóttir, M. V., Anderson, D. B., Agarwal, R., & Nelson, D. A. (2022). Aiding the prescriber: Developing a machine learning approach to personalized risk modeling for chronic opioid therapy amongst US Army soldiers. Health Care Management Science, 25(4), 649–665.
- Blumenthal‐Barby, J. S., & Krieger, H. (2015). Cognitive biases and heuristics in medical decision making: A critical review using a systematic search strategy. Medical Decision Making, 35(4), 539–557. https://doi.org/10.1177/0272989X14547740.
Paper not yet in RePEc: Add citation now
- Bobb, A., Gleason, K., Husch, M., Feinglass, J., Yarnold, P. R., & Noskin, G. A. (2004). The epidemiology of prescribing errors: The potential impact of computerized prescriber order entry. Archives of Internal Medicine, 164(7), 785–792. https://doi.org/10.1001/archinte.164.7.785.
Paper not yet in RePEc: Add citation now
- Booker, C., Mazzarelli, A., & Trzeciak, S. (2019). Compassionomics: The revolutionary scientific evidence that caring makes a difference. Fire Starter Publishing.
Paper not yet in RePEc: Add citation now
- Bresnahan, T. (2021). Artificial intelligence technologies and aggregate growth prospects. In G. R. Zodrow & J. W. Diamond (Eds.), Prospects for economic growth in the United States (pp. 132–170). Cambridge University Press. https://doi.org/10.1017/9781108856089.008.
Paper not yet in RePEc: Add citation now
Bresnahan, T. F., Brynjolfsson, E., & Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm‐level evidence. The Quarterly Journal of Economics, 117(1), 339–376. https://doi.org/10.1162/003355302753399526.
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies (1st edn). W. W. Norton & Company.
Paper not yet in RePEc: Add citation now
- Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research. https://doi.org/10.3386/w24001.
Paper not yet in RePEc: Add citation now
- Bundorf, K., Polyakova, M., & Tai‐Seale, M. (2019). How do humans interact with algorithms? Experimental evidence from health insurance. National Bureau of Economic Research. https://doi.org/10.3386/w25976.
Paper not yet in RePEc: Add citation now
- Bungartz, K. D., Lalowski, K., & Elkin, S. K. (2018). Making the right calls in precision oncology. Nature Biotechnology, 36(8), 692–696. https://doi.org/10.1038/nbt.4214.
Paper not yet in RePEc: Add citation now
- Butler, T., Maravent, S., Boisselle, J., Valdes, J., & Fellner, C. (2015). A review of 2014 cancer drug approvals, with a look at 2015 and beyond. P & T: A Peer‐Reviewed Journal for Formulary Management, 40(3), 191–205.
Paper not yet in RePEc: Add citation now
Camerer, C. F. (2018). Artificial intelligence and behavioral economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 587–608). University of Chicago Press. https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/artificial-intelligence-and-behavioral-economics.
- Campos‐Castillo, C., & Anthony, D. L. (2015). The double‐edged sword of electronic health records: Implications for patient disclosure. Journal of the American Medical Informatics Association, 22(e1), e130–e140.
Paper not yet in RePEc: Add citation now
Card, D., & DiNardo, J. E. (2002). Skill‐biased technological change and rising wage inequality: Some problems and puzzles. Journal of Labor Economics, 20(4), 733–783. https://doi.org/10.1086/342055.
- Chen, R. J., Chen, T. Y., Lipkova, J., Wang, J. J., Williamson, D. F. K., Lu, M. Y., Sahai, S., & Mahmood, F. (2021). Algorithm fairness in AI for medicine and healthcare. ArXiv: 2110.00603 [Cs]. http://arxiv.org/abs/2110.00603.
Paper not yet in RePEc: Add citation now
- Chen, Z., Song, Y., Chang, T.‐H., & Wan, X. (2020). Generating Radiology Reports via Memory‐driven Transformer. ArXiv:2010. 6056 [Cs]. http://arxiv.org/abs/2010.16056.
Paper not yet in RePEc: Add citation now
- Clement, J., Ren, Y. C., & Curley, S. (2021). Increasing system transparency about medical AI recommendations may not improve clinical experts’ decision quality. SSRN Scholarly Paper No. 3961156. https://doi.org/10.2139/ssrn.3961156.
Paper not yet in RePEc: Add citation now
- Corny, J., Rajkumar, A., Martin, O., Dode, X., Lajonchère, J.‐P., Billuart, O., Bézie, Y., & Buronfosse, A. (2020). A machine learning‐based clinical decision support system to identify prescriptions with a high risk of medication error. Journal of the American Medical Informatics Association, 27(11), 1688–1694. https://doi.org/10.1093/jamia/ocaa154.
Paper not yet in RePEc: Add citation now
- Crowley, R. S., Legowski, E., Medvedeva, O., Reitmeyer, K., Tseytlin, E., Castine, M., Jukic, D., & Mello‐Thoms, C. (2013). Automated detection of heuristics and biases among pathologists in a computer‐based system. Advances in Health Sciences Education, 18(3), 343–363. https://doi.org/10.1007/s10459-012-9374-z.
Paper not yet in RePEc: Add citation now
- Cutillo, C. M., Sharma, K. R., Foschini, L., Kundu, S., Mackintosh, M., Mandl, K. D., Beck, T., Collier, E., Colvis, C., Gersing, K., Gordon, V., Jensen, R., Shabestari, B., & Southall, N. (2020). Machine intelligence in healthcare—Perspectives on trustworthiness, explainability, usability, and transparency. Npj Digital Medicine, 3(1), 47. https://doi.org/10.1038/s41746-020-0254-2.
Paper not yet in RePEc: Add citation now
Cutler, D., Skinner, J. S., Stern, A. D., & Wennberg, D. (2019). Physician beliefs and patient preferences: A new look at regional variation in health care spending. American Economic Journal: Economic Policy, 11(1), 192–221. https://doi.org/10.1257/pol.20150421.
- Dai, T., & Singh, S. (2021). Artificial intelligence on vall: The physician's decision of whether to use AI in clinical practice. SSRN Scholarly Paper No. 3987454. https://doi.org/10.2139/ssrn.3987454.
Paper not yet in RePEc: Add citation now
- Danziger, S., Levav, J., & Avnaim‐Pesso, L. (2011). Extraneous factors in judicial decisions. Proceedings of the National Academy of Sciences United States of America, 108(17), 6889–6892. https://doi.org/10.1073/pnas.1018033108.
Paper not yet in RePEc: Add citation now
- Devaraj, A., Marshall, I. J., Wallace, B. C., & Li, J. J. (2021). Paragraph‐level simplification of medical texts. ArXiv: 2104.05767 [Cs]. http://arxiv.org/abs/2104.05767.
Paper not yet in RePEc: Add citation now
- Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033.
Paper not yet in RePEc: Add citation now
Dranove, D., & Garthwaite, C. (2022). Artificial intelligence, the evolution of the healthcare value chain, and the future of the physician. National Bureau of Economic Research.
- Drolet, B. C., & Lorenzi, N. M. (2011). Translational research: Understanding the continuum from bench to bedside. Translational Research, 157(1), 1–5. https://doi.org/10.1016/j.trsl.2010.10.002.
Paper not yet in RePEc: Add citation now
Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv, 2303,10130.
- Elwyn, G., Frosch, D., Thomson, R., Joseph‐Williams, N., Lloyd, A., Kinnersley, P., Cording, E., Tomson, D., Dodd, C., Rollnick, S., Edwards, A., & Barry, M. (2012). Shared decision making: A model for clinical practice. Journal of General Internal Medicine, 27(10), 1361–1367. https://doi.org/10.1007/s11606-012-2077-6.
Paper not yet in RePEc: Add citation now
- Emanuel, E. J., & Pearson, S. D. (2012). Physician autonomy and health care reform. Journal of the American Medical Association, 307(4), 367–368. https://doi.org/10.1001/jama.2012.19.
Paper not yet in RePEc: Add citation now
- Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 4(2), e19.
Paper not yet in RePEc: Add citation now
- Friedman, C. P., Gatti, G. G., Franz, T. M., Murphy, G. C., Wolf, F. M., Heckerling, P. S., Fine, P. L., Miller, T. M., & Elstein, A. S. (2005). Do physicians know when their diagnoses are correct? Journal of General Internal Medicine, 20(4), 334–339. https://doi.org/10.1111/j.1525-1497.2005.30145.x.
Paper not yet in RePEc: Add citation now
- Fügener, A., Grahl, J., Gupta, A., & Ketter, W. (2021). Cognitive challenges in human–artificial intelligence collaboration: Investigating the path toward productive delegation. Information Systems Research, 2021, 1079. https://doi.org/10.1287/isre.2021.1079.
Paper not yet in RePEc: Add citation now
- Garg, A. X., Adhikari, N. K. J., McDonald, H., Rosas‐Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J., & Haynes, R. B. (2005). Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. Journal of the American Medical Association, 293(10), 1223–1238. https://doi.org/10.1001/jama.293.10.1223.
Paper not yet in RePEc: Add citation now
Gates, A. J., Gysi, D. M., Kellis, M., & Barabási, A.‐L. (2021). A wealth of discovery built on the human genome project—By the numbers. Nature, 590(7845), 212–215. https://doi.org/10.1038/d41586-021-00314-6.
Goh, J. M., Gao, G., & Agarwal, R. (2011). Evolving work routines: Adaptive routinization of information technology in healthcare. Information Systems Research, 22(3), 565–585. https://doi.org/10.1287/isre.1110.0365.
Goldfarb, A., Taska, B., & Teodoridis, F. (2022). Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings. National Bureau of Economic Research. https://doi.org/10.3386/w29767.
- Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. arXiv:1412.6572. http://arxiv.org/abs/1412.6572.
Paper not yet in RePEc: Add citation now
- Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2018). Viewpoint: when will AI exceed human performance? Evidence from AI experts. Journal of Artificial Intelligence Research, 62, 729–754. https://doi.org/10.1613/jair.1.11222.
Paper not yet in RePEc: Add citation now
Greenwood, B. N., Agarwal, R., Agarwal, R., & Gopal, A. (2017). The when and why of abandonment: The role of organizational differences in medical technology life cycles. Management Science, 63(9), 2948–2966.
Greenwood, B. N., Agarwal, R., Agarwal, R., & Gopal, A. (2019). The role of individual and organizational expertise in the adoption of new practices. Organization Science, 30(1), 191–213. https://doi.org/10.1287/orsc.2018.1246.
- Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P. C., Mega, J. L., & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association, 316(22), 2402. https://doi.org/10.1001/jama.2016.17216.
Paper not yet in RePEc: Add citation now
- Hall, A., & Walton, G. (2004). Information overload within the health care system: A literature review. Health Information and Libraries Journal, 21(2), 102–108. https://doi.org/10.1111/j.1471-1842.2004.00506.x.
Paper not yet in RePEc: Add citation now
- Hall, B. H., & Khan, B. (2003). Adoption of new technology. National Bureau of Economic Research. https://doi.org/10.3386/w9730.
Paper not yet in RePEc: Add citation now
Hall, W. J., Chapman, M. V., Lee, K. M., Merino, Y. M., Thomas, T. W., Payne, B. K., Eng, E., Day, S. H., & Coyne‐Beasley, T. (2015). Implicit racial/ethnic bias among health care professionals and its influence on health care outcomes: A systematic review. American Journal of Public Health, 105(12), e60–e76. https://doi.org/10.2105/AJPH.2015.302903.
- Hefner, J. L., Hogan, T. H., Opoku‐Agyeman, W., & Menachemi, N. (2021). Defining safety net hospitals in the health services research literature: A systematic review and critical appraisal. BMC Health Services Research, 21(1), 278.
Paper not yet in RePEc: Add citation now
- Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine learning and artificial intelligence: Definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69–76. https://doi.org/10.1007/s12178-020-09600-8.
Paper not yet in RePEc: Add citation now
- Henry, K. E., Hager, D. N., Pronovost, P. J., & Saria, S. (2015). A targeted real‐time early warning score (TREWScore) for septic shock. Science Translational Medicine, 7(299), ra122. https://doi.org/10.1126/scitranslmed.aab3719.
Paper not yet in RePEc: Add citation now
- Hertwig, R., & Wulff, D. U. (2022). A description–experience framework of the psychology of risk. Perspectives on Psychological Science, 17(3), 631–651. https://doi.org/10.1177/17456916211026896.
Paper not yet in RePEc: Add citation now
- Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534–539. https://doi.org/10.1111/j.0956-7976.2004.00715.x.
Paper not yet in RePEc: Add citation now
- Hevner, A. R., March, S. T., Park, J., & Ram, S. (2010). Design science in information systems research. Management Information Systems Quarterly, 28(1), 6.
Paper not yet in RePEc: Add citation now
- Hoffman, K. M., Trawalter, S., Axt, J. R., & Oliver, M. N. (2016). Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between blacks and whites. Proceedings of the National Academy of Sciences United States of America, 113(16), 4296–4301. https://doi.org/10.1073/pnas.1516047113.
Paper not yet in RePEc: Add citation now
- Hosanagar, K. (2020). A human's guide to machine intelligence: How algorithms are shaping our lives and how we can stay in control. Penguin.
Paper not yet in RePEc: Add citation now
- Huang, C. W., Wu, B. C. Y., Nguyen, P. A., Wang, H. H., Kao, C. C., Lee, P. C., Rahmanti, A. R., Hsu, J. C., Yang, H. C., & Li, Y. C. J. (2023). Emotion recognition in doctor‐patient interactions from real‐world clinical video database: Initial development of artificial empathy. Computer Methods and Programs in Biomedicine, 233, 107480. https://doi.org/10.1016/j.cmpb.2023.107480.
Paper not yet in RePEc: Add citation now
- Huesch, M. D., & Mosher, T. J. (2017). Using it or losing it? The case for data scientists inside health care. NEJM Catalyst. https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0493.
Paper not yet in RePEc: Add citation now
- Institute of Medicine (US) Committee on Quality of Health Care in America. (2000). To Err is human: Building a safer health system. National Academies Press. http://www.ncbi.nlm.nih.gov/books/NBK225182/.
Paper not yet in RePEc: Add citation now
- Institute of Medicine (US) Committee on Quality of Health Care in America. (2001). Crossing the quality chasm: A new health system for the 21st century. National Academies Press. http://www.ncbi.nlm.nih.gov/books/NBK222274/.
Paper not yet in RePEc: Add citation now
- Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: Radiologists and pathologists as information specialists. Journal of the American Medical Association, 316(22), 2353. https://doi.org/10.1001/jama.2016.17438.
Paper not yet in RePEc: Add citation now
- Johnson, M., & Vera, A. H. (2019). No AI is an island: The case for teaming intelligence. AI Magazine, 40(1), 16–28. https://doi.org/10.1609/aimag.v40i1.2842.
Paper not yet in RePEc: Add citation now
Jussupow, E., Spohrer, K., Heinzl, A., & Gawlitza, J. (2021). Augmenting medical diagnosis decisions? An investigation into physicians' decision‐making process with artificial intelligence. Information Systems Research, 32(3), 713–735. https://doi.org/10.1287/isre.2020.0980.
- Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697–720. https://doi.org/10.1037/0003-066X.58.9.697.
Paper not yet in RePEc: Add citation now
- Keister, L. A., Stecher, C., Aronson, B., McConnell, W., Hustedt, J., & Moody, J. W. (2021). Provider bias in prescribing opioid analgesics: A study of electronic medical records at a hospital emergency department. BMC Public Health, 21(1), 1518. https://doi.org/10.1186/s12889-021-11551-9.
Paper not yet in RePEc: Add citation now
- Kim, W. (2018). Fear, hype, hope, and reality—How AI is entering the health care system—Radiology today magazine. https://www.radiologytoday.net/archive/rt0319p6.shtml.
Paper not yet in RePEc: Add citation now
- LeCun, Y. (2022). A path towards autonomous machine intelligence, version 0.9.2, 2022‐06‐27. Open Review, 62.
Paper not yet in RePEc: Add citation now
- Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90–103.
Paper not yet in RePEc: Add citation now
- Lucas, G. M., Gratch, J., King, A., & Morency, L. P. (2014). It's only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94–100.
Paper not yet in RePEc: Add citation now
- Ly, D. P. (2021). The influence of the availability heuristic on physicians in the emergency department. Annals of Emergency Medicine, 78(5), 650–657. https://doi.org/10.1016/j.annemergmed.2021.06.012.
Paper not yet in RePEc: Add citation now
- Mamede, S., van Gog, T., van den Berge, K., Rikers, R. M. J. P., van Saase, J. L. C. M., van Guldener, C., & Schmidt, H. G. (2010). Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. Journal of the American Medical Association, 304(11), 1198–1203. https://doi.org/10.1001/jama.2010.1276.
Paper not yet in RePEc: Add citation now
- Matthews, J. B. (2021). Truth and truthiness: Evidence, experience and clinical judgement in surgery. British Journal of Surgery, 108(7), 742–744. https://doi.org/10.1093/bjs/znab087.
Paper not yet in RePEc: Add citation now
- Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. The Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335.
Paper not yet in RePEc: Add citation now
- Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2), 1–25. https://doi.org/10.1145/1985347.1985353.
Paper not yet in RePEc: Add citation now
- Menon, N. K., Shanafelt, T. D., Sinsky, C. A., Linzer, M., Carlasare, L., Brady, K. J. S., Stillman, M. J., & Trockel, M. T. (2020). Association of physician burnout with suicidal ideation and medical errors. JAMA Network Open, 3(12), e2028780. https://doi.org/10.1001/jamanetworkopen.2020.28780.
Paper not yet in RePEc: Add citation now
Miller, A. R., & Tucker, C. (2018). Privacy protection, personalized medicine, and genetic testing. Management Science, 64(10), 4648–4668.
- Mullainathan, S., & Obermeyer, Z. (2022). Diagnosing physician error: A machine learning approach to low‐value health care. The Quarterly Journal of Economics, 137(2), 679–727. https://doi.org/10.1093/qje/qjab046.
Paper not yet in RePEc: Add citation now
- Murray, A., Rhymer, J., & Sirmon, D. G. (2021). Humans and technology: Forms of conjoined agency in organizations. Academy of Management Review, 46(3), 552–571.
Paper not yet in RePEc: Add citation now
- Nathan, V., Paul, S., Prioleau, T., Niu, L., Mortazavi, B. J., Cambone, S. A., Veeraraghavan, A., Sabharwal, A., & Jafari, R. (2018). A survey on smart homes for aging in place: Toward solutions to the specific needs of the elderly. IEEE Signal Processing Magazine, 35(5), 111–119. https://doi.org/10.1109/MSP.2018.2846286.
Paper not yet in RePEc: Add citation now
- Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366, 447–453. https://doi.org/10.1126/science.aax2342.
Paper not yet in RePEc: Add citation now
- Ozbulak, U., Van Messem, A., & De Neve, W. (2019). Impact of adversarial examples on deep learning models for biomedical image segmentation. In D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.‐T. Yap, & A. Khan (Eds.), Medical image computing and computer assisted intervention—MICCAI 2019 (pp. 300–308). Springer International Publishing. https://doi.org/10.1007/978-3-030-32245-8_34.
Paper not yet in RePEc: Add citation now
- Parekh, V., Shah, D., & Shah, M. (2020). Fatigue detection using artificial intelligence framework. Augmented Human Research, 5(1), 5. https://doi.org/10.1007/s41133-019-0023-4.
Paper not yet in RePEc: Add citation now
- Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press.
Paper not yet in RePEc: Add citation now
- Pfeffer, J., & Salancik, G. R. (2003). The external control of organizations: A resource dependence perspective. Stanford University Press.
Paper not yet in RePEc: Add citation now
- Prasad, V., Fojo, T., & Brada, M. (2016). Precision oncology: origins, optimism, and potential. The Lancet Oncology, 17(2), e81–e86. https://doi.org/10.1016/S1470-2045(15)00620-8.
Paper not yet in RePEc: Add citation now
- Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866–872. https://doi.org/10.7326/M18-1990.
Paper not yet in RePEc: Add citation now
- Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0.
Paper not yet in RePEc: Add citation now
Rawson, T. M., Ahmad, R., Toumazou, C., Georgiou, P., & Holmes, A. H. (2019). Artificial intelligence can improve decision‐making in infection management. Nature Human Behaviour, 3(6), 543–545. https://doi.org/10.1038/s41562-019-0583-9.
- Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid, F.‐M., von Tengg‐Kobligk, H., Summers, R. M., & Wiest, R. (2020). On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiology. Artificial intelligence, 2(3), 190043. https://doi.org/10.1148/ryai.2020190043.
Paper not yet in RePEc: Add citation now
- Rotenstein, L. S., Torre, M., Ramos, M. A., Rosales, R. C., Guille, C., Sen, S., & Mata, D. A. (2018). Prevalence of burnout among physicians: A systematic review. Journal of the American Medical Association, 320(11), 1131. https://doi.org/10.1001/jama.2018.12777.
Paper not yet in RePEc: Add citation now
- Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., Raman, R., Levinstein, B., Liu, Y., Schaekermann, M., Lee, R., Virmani, S., Widner, K., Chambers, J., Hersch, F., Peng, L., & Webster, D. R. (2022). Real‐time diabetic retinopathy screening by deep learning in a multisite national screening programme: A prospective interventional cohort study. The Lancet Digital Health, 4(4), e235–e244. https://doi.org/10.1016/S2589-7500(22)00017-6.
Paper not yet in RePEc: Add citation now
- Saposnik, G., Redelmeier, D., Ruff, C. C., & Tobler, P. N. (2016). Cognitive biases associated with medical decisions: A systematic review. BMC Medical Informatics and Decision Making, 16(1), 138. https://doi.org/10.1186/s12911-016-0377-1.
Paper not yet in RePEc: Add citation now
- Schneider, S., Stone, A. A., Schwartz, J. E., & Broderick, J. E. (2011). Peak and end effects in patients’ daily recall of pain and fatigue: A within‐subjects analysis. The Journal of Pain, 12(2), 228–235. https://doi.org/10.1016/j.jpain.2010.07.001.
Paper not yet in RePEc: Add citation now
- Sendelbach, S., & Funk, M. (2013). Alarm fatigue. AACN Advanced Critical Care, 24(4), 378–386. https://doi.org/10.4037/NCI.0b013e3182a903f9.
Paper not yet in RePEc: Add citation now
- Shanafelt, T. D., Balch, C. M., Bechamps, G., Russell, T., Dyrbye, L., Satele, D., Collicott, P., Novotny, P. J., Sloan, J., & Freischlag, J. (2010). Burnout and medical errors among American surgeons. Annals of Surgery, 251(6), 995–1000. https://doi.org/10.1097/SLA.0b013e3181bfdab3.
Paper not yet in RePEc: Add citation now
- Shanafelt, T. D., West, C. P., Sinsky, C., Trockel, M., Tutty, M., Satele, D. V., Carlasare, L. E., & Dyrbye, L. N. (2019). Changes in burnout and satisfaction with work‐life integration in physicians and the general US working population between 2011 and 2017. Mayo Clinic Proceedings, 94(9), 1681–1694. https://doi.org/10.1016/j.mayocp.2018.10.023.
Paper not yet in RePEc: Add citation now
- Sharma, N., Ng, A. Y., James, J. J., Khara, G., Ambrozay, E., Austin, C. C., & Kecskemethy, P. D. (2021). Retrospective large‐scale evaluation of an AI system as an independent reader for double reading in breast cancer screening. medRxiv: 2021‐02.
Paper not yet in RePEc: Add citation now
- Shi, J., Gao, X., Ha, C., Wang, Y., Gao, G., & Chen, Y. (2020). Patient ADE risk prediction through hierarchical time‐aware neural network using claim codes. 2020 IEEE International Conference on Big Data (Big Data), 1388–1393. https://doi.org/10.1109/BigData50022.2020.9378336.
Paper not yet in RePEc: Add citation now
- Siebig, S., Kuhls, S., Imhoff, M., Gather, U., Schölmerich, J., & Wrede, C. E. (2010). Intensive care unit alarms—How many do we need?. Critical Care Medicine, 38(2), 451–456. https://doi.org/10.1097/CCM.0b013e3181cb0888.
Paper not yet in RePEc: Add citation now
- Simon, G., DiNardo, C. D., Takahashi, K., Cascone, T., Powers, C., Stevens, R., Allen, J., Antonoff, M. B., Gomez, D., Keane, P., Suarez Saiz, F., Nguyen, Q., Roarty, E., Pierce, S., Zhang, J., Hardeman Barnhill, E., Lakhani, K., Shaw, K., Smith, B., … Chin, L. (2019). Applying artificial intelligence to address the knowledge gaps in cancer care. The Oncologist, 24(6), 772–782. https://doi.org/10.1634/theoncologist.2018-0257.
Paper not yet in RePEc: Add citation now
- Topol, E. (2019a). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
Paper not yet in RePEc: Add citation now
- Topol, E. J. (2019b). High‐performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7.
Paper not yet in RePEc: Add citation now
- Trimble, M., & Hamilton, P. (2016). The thinking doctor: Clinical decision making in contemporary medicine. Clinical Medicine, 16(4), 343–346. https://doi.org/10.7861/clinmedicine.16-4-343.
Paper not yet in RePEc: Add citation now
- Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131. https://doi.org/10.1126/science.185.4157.1124.
Paper not yet in RePEc: Add citation now
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574.
- Young, A. D., & Monroe, A. E. (2019). Autonomous morals: Inferences of mind predict acceptance of AI behavior in sacrificial moral dilemmas. Journal of Experimental Social Psychology, 85, 103870.
Paper not yet in RePEc: Add citation now
- Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., & Troyanskaya, O. G. (2018). Deep learning sequence‐based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 50(8), 1171–1179. https://doi.org/10.1038/s41588-018-0160-6.
Paper not yet in RePEc: Add citation now