create a website

Augmenting physicians with artificial intelligence to transform healthcare: Challenges and opportunities. (2024). Gao, Guodong ; Dugas, Michelle ; Agarwal, Ritu.
In: Journal of Economics & Management Strategy.
RePEc:bla:jemstr:v:33:y:2024:i:2:p:360-374.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 131

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. The business revolution: Economy‐wide impacts of artificial intelligence and digital platforms. (2024). Prince, Jeffrey ; Halaburda, Hanna ; Sokol, Daniel D ; Zhu, Feng.
    In: Journal of Economics & Management Strategy.
    RePEc:bla:jemstr:v:33:y:2024:i:2:p:269-275.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3–30. https://doi.org/10.1257/jep.33.2.3.

  2. Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. Journal of Economic Literature, 54(2), 442–492.

  3. Adler‐Milstein, J., Chen, J. H., & Dhaliwal, G. (2021). Next‐generation artificial intelligence for diagnosis: From predicting diagnostic labels to wayfinding. Journal of the American Medical Association, 326, 2467. https://doi.org/10.1001/jama.2021.22396.
    Paper not yet in RePEc: Add citation now
  4. Agarwal, R., Dugas, M., Gao, G., & Kannan, P. K. (2020). Emerging technologies and analytics for a new era of value‐centered marketing in healthcare. Journal of the Academy of Marketing Science, 48(1), 9–23. https://doi.org/10.1007/s11747-019-00692-4.

  5. Agarwal, R., Dugas, M., Ramaprasad, J., Luo, J., Li, G., & Gao, G. (2021). Socioeconomic privilege and political ideology are associated with racial disparity in COVID‐19 vaccination. Proceedings of the National Academy of Sciences United States of America, 118(33), e2107873118. https://doi.org/10.1073/pnas.2107873118.
    Paper not yet in RePEc: Add citation now
  6. Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 21(4), 796–809. https://doi.org/10.1287/isre.1100.0327.

  7. Agarwal, R., Liu, C. W., & Prasad, K. (2019). Personal research, second opinions, and the diagnostic effort of experts. Journal of Economic Behavior & Organization, 158, 44–61.

  8. Agrawal, A., Gans, J. S., & Goldfarb, A. (2023). Artificial intelligence adoption and system‐wide change. Journal of Economics & Management Strategy.
    Paper not yet in RePEc: Add citation now
  9. Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Press.
    Paper not yet in RePEc: Add citation now
  10. Agrawal, A., Gans, J., & Goldfarb, A. (2019). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.001.0001.

  11. Ahn, D., Almaatouq, A., Gulabani, M., & Hosanagar, K. (2021). Will we trust what we don't understand? Impact of model interpretability and outcome feedback on trust in AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3964332.
    Paper not yet in RePEc: Add citation now
  12. AMA. (2022). AMA digital health care 2022 study findings: Education modules & resources. https://www.ama-assn.org/system/files/ama-digital-health-study.pdf.
    Paper not yet in RePEc: Add citation now
  13. Angst, C. M., Agarwal, R., Sambamurthy, V., & Kelley, K. (2010). Social contagion and information technology diffusion: The adoption of electronic medical records in US hospitals. Management Science, 56(8), 1219–1241.

  14. Araujo, V., Carvallo, A., Aspillaga, C., & Parra, D. (2020). On adversarial examples for biomedical NLP tasks. arXiv:2004.11157. https://doi.org/10.48550/arXiv.2004.11157.
    Paper not yet in RePEc: Add citation now
  15. Arndt, B. G., Beasley, J. W., Watkinson, M. D., Temte, J. L., Tuan, W.‐J., Sinsky, C. A., & Gilchrist, V. J. (2017). Tethered to the EHR: primary care physician workload assessment using EHR event log data and time‐motion observations. The Annals of Family Medicine, 15(5), 419–426. https://doi.org/10.1370/afm.2121.
    Paper not yet in RePEc: Add citation now
  16. Ashley, E. A. (2016). Towards precision medicine. Nature Reviews Genetics, 17(9), 507–522. https://doi.org/10.1038/nrg.2016.86.
    Paper not yet in RePEc: Add citation now
  17. Athey, S. (2018). The impact of machine learning on economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 507–547). University of Chicago Press. https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/impact-machine-learning-economics.

  18. Au‐Yeung, W.‐T. M., Sevakula, R. K., Sahani, A. K., Kassab, M., Boyer, R., Isselbacher, E. M., & Armoundas, A. A. (2021). Real‐time machine learning‐based intensive care unit alarm classification without prior knowledge of the underlying rhythm. European Heart Journal ‐ Digital Health, 2(3), 437–445. https://doi.org/10.1093/ehjdh/ztab058.
    Paper not yet in RePEc: Add citation now
  19. Aubrey, A., & Godoy, M. (2016, August 3). 75 percent of Americans say they eat healthy—Despite evidence to the contrary. NPR. https://www.npr.org/sections/thesalt/2016/08/03/487640479/75-percent-of-americans-say-they-eat-healthy-despite-evidence-to-the-contrary.
    Paper not yet in RePEc: Add citation now
  20. Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3.

  21. Baird, A., & Maruping, L. M. (2021). The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts. MIS Quarterly, 45(1), 315–341.
    Paper not yet in RePEc: Add citation now
  22. Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., & Biecek, P. (2021). dalex: Responsible machine learning with interactive explainability and fairness in Python. The Journal of Machine Learning Research, 22(1), 2149765.
    Paper not yet in RePEc: Add citation now
  23. Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., & Horvitz, E. (2019). Updates in human‐AI teams: Understanding and addressing the performance/compatibility tradeoff. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 2429–2437.
    Paper not yet in RePEc: Add citation now
  24. Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122–142. https://doi.org/10.1006/game.1995.1027.

  25. Bhatt, U., Andrus, M., Weller, A., & Xiang, A. (2020). Machine learning explainability for external stakeholders. arXiv:2007.05408. https://doi.org/10.48550/arXiv.2007.05408.
    Paper not yet in RePEc: Add citation now
  26. Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34.
    Paper not yet in RePEc: Add citation now
  27. Bigman, Y. E., Wilson, D., Arnestad, M. N., Waytz, A., & Gray, K. (2023). Algorithmic discrimination causes less moral outrage than human discrimination. Journal of Experimental Psychology: General, 152, 4–27. https://doi.org/10.1037/xge0001250.
    Paper not yet in RePEc: Add citation now
  28. Bjarnadóttir, M. V., Anderson, D. B., Agarwal, R., & Nelson, D. A. (2022). Aiding the prescriber: Developing a machine learning approach to personalized risk modeling for chronic opioid therapy amongst US Army soldiers. Health Care Management Science, 25(4), 649–665.

  29. Blumenthal‐Barby, J. S., & Krieger, H. (2015). Cognitive biases and heuristics in medical decision making: A critical review using a systematic search strategy. Medical Decision Making, 35(4), 539–557. https://doi.org/10.1177/0272989X14547740.
    Paper not yet in RePEc: Add citation now
  30. Bobb, A., Gleason, K., Husch, M., Feinglass, J., Yarnold, P. R., & Noskin, G. A. (2004). The epidemiology of prescribing errors: The potential impact of computerized prescriber order entry. Archives of Internal Medicine, 164(7), 785–792. https://doi.org/10.1001/archinte.164.7.785.
    Paper not yet in RePEc: Add citation now
  31. Booker, C., Mazzarelli, A., & Trzeciak, S. (2019). Compassionomics: The revolutionary scientific evidence that caring makes a difference. Fire Starter Publishing.
    Paper not yet in RePEc: Add citation now
  32. Bresnahan, T. (2021). Artificial intelligence technologies and aggregate growth prospects. In G. R. Zodrow & J. W. Diamond (Eds.), Prospects for economic growth in the United States (pp. 132–170). Cambridge University Press. https://doi.org/10.1017/9781108856089.008.
    Paper not yet in RePEc: Add citation now
  33. Bresnahan, T. F., Brynjolfsson, E., & Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm‐level evidence. The Quarterly Journal of Economics, 117(1), 339–376. https://doi.org/10.1162/003355302753399526.

  34. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies (1st edn). W. W. Norton & Company.
    Paper not yet in RePEc: Add citation now
  35. Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (No. w24001). National Bureau of Economic Research. https://doi.org/10.3386/w24001.
    Paper not yet in RePEc: Add citation now
  36. Bundorf, K., Polyakova, M., & Tai‐Seale, M. (2019). How do humans interact with algorithms? Experimental evidence from health insurance. National Bureau of Economic Research. https://doi.org/10.3386/w25976.
    Paper not yet in RePEc: Add citation now
  37. Bungartz, K. D., Lalowski, K., & Elkin, S. K. (2018). Making the right calls in precision oncology. Nature Biotechnology, 36(8), 692–696. https://doi.org/10.1038/nbt.4214.
    Paper not yet in RePEc: Add citation now
  38. Butler, T., Maravent, S., Boisselle, J., Valdes, J., & Fellner, C. (2015). A review of 2014 cancer drug approvals, with a look at 2015 and beyond. P & T: A Peer‐Reviewed Journal for Formulary Management, 40(3), 191–205.
    Paper not yet in RePEc: Add citation now
  39. Camerer, C. F. (2018). Artificial intelligence and behavioral economics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 587–608). University of Chicago Press. https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/artificial-intelligence-and-behavioral-economics.

  40. Campos‐Castillo, C., & Anthony, D. L. (2015). The double‐edged sword of electronic health records: Implications for patient disclosure. Journal of the American Medical Informatics Association, 22(e1), e130–e140.
    Paper not yet in RePEc: Add citation now
  41. Card, D., & DiNardo, J. E. (2002). Skill‐biased technological change and rising wage inequality: Some problems and puzzles. Journal of Labor Economics, 20(4), 733–783. https://doi.org/10.1086/342055.

  42. Chen, R. J., Chen, T. Y., Lipkova, J., Wang, J. J., Williamson, D. F. K., Lu, M. Y., Sahai, S., & Mahmood, F. (2021). Algorithm fairness in AI for medicine and healthcare. ArXiv: 2110.00603 [Cs]. http://arxiv.org/abs/2110.00603.
    Paper not yet in RePEc: Add citation now
  43. Chen, Z., Song, Y., Chang, T.‐H., & Wan, X. (2020). Generating Radiology Reports via Memory‐driven Transformer. ArXiv:2010. 6056 [Cs]. http://arxiv.org/abs/2010.16056.
    Paper not yet in RePEc: Add citation now
  44. Clement, J., Ren, Y. C., & Curley, S. (2021). Increasing system transparency about medical AI recommendations may not improve clinical experts’ decision quality. SSRN Scholarly Paper No. 3961156. https://doi.org/10.2139/ssrn.3961156.
    Paper not yet in RePEc: Add citation now
  45. Corny, J., Rajkumar, A., Martin, O., Dode, X., Lajonchère, J.‐P., Billuart, O., Bézie, Y., & Buronfosse, A. (2020). A machine learning‐based clinical decision support system to identify prescriptions with a high risk of medication error. Journal of the American Medical Informatics Association, 27(11), 1688–1694. https://doi.org/10.1093/jamia/ocaa154.
    Paper not yet in RePEc: Add citation now
  46. Crowley, R. S., Legowski, E., Medvedeva, O., Reitmeyer, K., Tseytlin, E., Castine, M., Jukic, D., & Mello‐Thoms, C. (2013). Automated detection of heuristics and biases among pathologists in a computer‐based system. Advances in Health Sciences Education, 18(3), 343–363. https://doi.org/10.1007/s10459-012-9374-z.
    Paper not yet in RePEc: Add citation now
  47. Cutillo, C. M., Sharma, K. R., Foschini, L., Kundu, S., Mackintosh, M., Mandl, K. D., Beck, T., Collier, E., Colvis, C., Gersing, K., Gordon, V., Jensen, R., Shabestari, B., & Southall, N. (2020). Machine intelligence in healthcare—Perspectives on trustworthiness, explainability, usability, and transparency. Npj Digital Medicine, 3(1), 47. https://doi.org/10.1038/s41746-020-0254-2.
    Paper not yet in RePEc: Add citation now
  48. Cutler, D., Skinner, J. S., Stern, A. D., & Wennberg, D. (2019). Physician beliefs and patient preferences: A new look at regional variation in health care spending. American Economic Journal: Economic Policy, 11(1), 192–221. https://doi.org/10.1257/pol.20150421.

  49. Dai, T., & Singh, S. (2021). Artificial intelligence on vall: The physician's decision of whether to use AI in clinical practice. SSRN Scholarly Paper No. 3987454. https://doi.org/10.2139/ssrn.3987454.
    Paper not yet in RePEc: Add citation now
  50. Danziger, S., Levav, J., & Avnaim‐Pesso, L. (2011). Extraneous factors in judicial decisions. Proceedings of the National Academy of Sciences United States of America, 108(17), 6889–6892. https://doi.org/10.1073/pnas.1018033108.
    Paper not yet in RePEc: Add citation now
  51. Devaraj, A., Marshall, I. J., Wallace, B. C., & Li, J. J. (2021). Paragraph‐level simplification of medical texts. ArXiv: 2104.05767 [Cs]. http://arxiv.org/abs/2104.05767.
    Paper not yet in RePEc: Add citation now
  52. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033.
    Paper not yet in RePEc: Add citation now
  53. Dranove, D., & Garthwaite, C. (2022). Artificial intelligence, the evolution of the healthcare value chain, and the future of the physician. National Bureau of Economic Research.

  54. Drolet, B. C., & Lorenzi, N. M. (2011). Translational research: Understanding the continuum from bench to bedside. Translational Research, 157(1), 1–5. https://doi.org/10.1016/j.trsl.2010.10.002.
    Paper not yet in RePEc: Add citation now
  55. Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv, 2303,10130.

  56. Elwyn, G., Frosch, D., Thomson, R., Joseph‐Williams, N., Lloyd, A., Kinnersley, P., Cording, E., Tomson, D., Dodd, C., Rollnick, S., Edwards, A., & Barry, M. (2012). Shared decision making: A model for clinical practice. Journal of General Internal Medicine, 27(10), 1361–1367. https://doi.org/10.1007/s11606-012-2077-6.
    Paper not yet in RePEc: Add citation now
  57. Emanuel, E. J., & Pearson, S. D. (2012). Physician autonomy and health care reform. Journal of the American Medical Association, 307(4), 367–368. https://doi.org/10.1001/jama.2012.19.
    Paper not yet in RePEc: Add citation now
  58. Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 4(2), e19.
    Paper not yet in RePEc: Add citation now
  59. Friedman, C. P., Gatti, G. G., Franz, T. M., Murphy, G. C., Wolf, F. M., Heckerling, P. S., Fine, P. L., Miller, T. M., & Elstein, A. S. (2005). Do physicians know when their diagnoses are correct? Journal of General Internal Medicine, 20(4), 334–339. https://doi.org/10.1111/j.1525-1497.2005.30145.x.
    Paper not yet in RePEc: Add citation now
  60. Fügener, A., Grahl, J., Gupta, A., & Ketter, W. (2021). Cognitive challenges in human–artificial intelligence collaboration: Investigating the path toward productive delegation. Information Systems Research, 2021, 1079. https://doi.org/10.1287/isre.2021.1079.
    Paper not yet in RePEc: Add citation now
  61. Garg, A. X., Adhikari, N. K. J., McDonald, H., Rosas‐Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J., & Haynes, R. B. (2005). Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. Journal of the American Medical Association, 293(10), 1223–1238. https://doi.org/10.1001/jama.293.10.1223.
    Paper not yet in RePEc: Add citation now
  62. Gates, A. J., Gysi, D. M., Kellis, M., & Barabási, A.‐L. (2021). A wealth of discovery built on the human genome project—By the numbers. Nature, 590(7845), 212–215. https://doi.org/10.1038/d41586-021-00314-6.

  63. Goh, J. M., Gao, G., & Agarwal, R. (2011). Evolving work routines: Adaptive routinization of information technology in healthcare. Information Systems Research, 22(3), 565–585. https://doi.org/10.1287/isre.1110.0365.

  64. Goldfarb, A., Taska, B., & Teodoridis, F. (2022). Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings. National Bureau of Economic Research. https://doi.org/10.3386/w29767.

  65. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. arXiv:1412.6572. http://arxiv.org/abs/1412.6572.
    Paper not yet in RePEc: Add citation now
  66. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2018). Viewpoint: when will AI exceed human performance? Evidence from AI experts. Journal of Artificial Intelligence Research, 62, 729–754. https://doi.org/10.1613/jair.1.11222.
    Paper not yet in RePEc: Add citation now
  67. Greenwood, B. N., Agarwal, R., Agarwal, R., & Gopal, A. (2017). The when and why of abandonment: The role of organizational differences in medical technology life cycles. Management Science, 63(9), 2948–2966.

  68. Greenwood, B. N., Agarwal, R., Agarwal, R., & Gopal, A. (2019). The role of individual and organizational expertise in the adoption of new practices. Organization Science, 30(1), 191–213. https://doi.org/10.1287/orsc.2018.1246.

  69. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P. C., Mega, J. L., & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association, 316(22), 2402. https://doi.org/10.1001/jama.2016.17216.
    Paper not yet in RePEc: Add citation now
  70. Hall, A., & Walton, G. (2004). Information overload within the health care system: A literature review. Health Information and Libraries Journal, 21(2), 102–108. https://doi.org/10.1111/j.1471-1842.2004.00506.x.
    Paper not yet in RePEc: Add citation now
  71. Hall, B. H., & Khan, B. (2003). Adoption of new technology. National Bureau of Economic Research. https://doi.org/10.3386/w9730.
    Paper not yet in RePEc: Add citation now
  72. Hall, W. J., Chapman, M. V., Lee, K. M., Merino, Y. M., Thomas, T. W., Payne, B. K., Eng, E., Day, S. H., & Coyne‐Beasley, T. (2015). Implicit racial/ethnic bias among health care professionals and its influence on health care outcomes: A systematic review. American Journal of Public Health, 105(12), e60–e76. https://doi.org/10.2105/AJPH.2015.302903.

  73. Hefner, J. L., Hogan, T. H., Opoku‐Agyeman, W., & Menachemi, N. (2021). Defining safety net hospitals in the health services research literature: A systematic review and critical appraisal. BMC Health Services Research, 21(1), 278.
    Paper not yet in RePEc: Add citation now
  74. Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine learning and artificial intelligence: Definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69–76. https://doi.org/10.1007/s12178-020-09600-8.
    Paper not yet in RePEc: Add citation now
  75. Henry, K. E., Hager, D. N., Pronovost, P. J., & Saria, S. (2015). A targeted real‐time early warning score (TREWScore) for septic shock. Science Translational Medicine, 7(299), ra122. https://doi.org/10.1126/scitranslmed.aab3719.
    Paper not yet in RePEc: Add citation now
  76. Hertwig, R., & Wulff, D. U. (2022). A description–experience framework of the psychology of risk. Perspectives on Psychological Science, 17(3), 631–651. https://doi.org/10.1177/17456916211026896.
    Paper not yet in RePEc: Add citation now
  77. Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15(8), 534–539. https://doi.org/10.1111/j.0956-7976.2004.00715.x.
    Paper not yet in RePEc: Add citation now
  78. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2010). Design science in information systems research. Management Information Systems Quarterly, 28(1), 6.
    Paper not yet in RePEc: Add citation now
  79. Hoffman, K. M., Trawalter, S., Axt, J. R., & Oliver, M. N. (2016). Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between blacks and whites. Proceedings of the National Academy of Sciences United States of America, 113(16), 4296–4301. https://doi.org/10.1073/pnas.1516047113.
    Paper not yet in RePEc: Add citation now
  80. Hosanagar, K. (2020). A human's guide to machine intelligence: How algorithms are shaping our lives and how we can stay in control. Penguin.
    Paper not yet in RePEc: Add citation now
  81. Huang, C. W., Wu, B. C. Y., Nguyen, P. A., Wang, H. H., Kao, C. C., Lee, P. C., Rahmanti, A. R., Hsu, J. C., Yang, H. C., & Li, Y. C. J. (2023). Emotion recognition in doctor‐patient interactions from real‐world clinical video database: Initial development of artificial empathy. Computer Methods and Programs in Biomedicine, 233, 107480. https://doi.org/10.1016/j.cmpb.2023.107480.
    Paper not yet in RePEc: Add citation now
  82. Huesch, M. D., & Mosher, T. J. (2017). Using it or losing it? The case for data scientists inside health care. NEJM Catalyst. https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0493.
    Paper not yet in RePEc: Add citation now
  83. Institute of Medicine (US) Committee on Quality of Health Care in America. (2000). To Err is human: Building a safer health system. National Academies Press. http://www.ncbi.nlm.nih.gov/books/NBK225182/.
    Paper not yet in RePEc: Add citation now
  84. Institute of Medicine (US) Committee on Quality of Health Care in America. (2001). Crossing the quality chasm: A new health system for the 21st century. National Academies Press. http://www.ncbi.nlm.nih.gov/books/NBK222274/.
    Paper not yet in RePEc: Add citation now
  85. Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: Radiologists and pathologists as information specialists. Journal of the American Medical Association, 316(22), 2353. https://doi.org/10.1001/jama.2016.17438.
    Paper not yet in RePEc: Add citation now
  86. Johnson, M., & Vera, A. H. (2019). No AI is an island: The case for teaming intelligence. AI Magazine, 40(1), 16–28. https://doi.org/10.1609/aimag.v40i1.2842.
    Paper not yet in RePEc: Add citation now
  87. Jussupow, E., Spohrer, K., Heinzl, A., & Gawlitza, J. (2021). Augmenting medical diagnosis decisions? An investigation into physicians' decision‐making process with artificial intelligence. Information Systems Research, 32(3), 713–735. https://doi.org/10.1287/isre.2020.0980.

  88. Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697–720. https://doi.org/10.1037/0003-066X.58.9.697.
    Paper not yet in RePEc: Add citation now
  89. Keister, L. A., Stecher, C., Aronson, B., McConnell, W., Hustedt, J., & Moody, J. W. (2021). Provider bias in prescribing opioid analgesics: A study of electronic medical records at a hospital emergency department. BMC Public Health, 21(1), 1518. https://doi.org/10.1186/s12889-021-11551-9.
    Paper not yet in RePEc: Add citation now
  90. Kim, W. (2018). Fear, hype, hope, and reality—How AI is entering the health care system—Radiology today magazine. https://www.radiologytoday.net/archive/rt0319p6.shtml.
    Paper not yet in RePEc: Add citation now
  91. LeCun, Y. (2022). A path towards autonomous machine intelligence, version 0.9.2, 2022‐06‐27. Open Review, 62.
    Paper not yet in RePEc: Add citation now
  92. Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90–103.
    Paper not yet in RePEc: Add citation now
  93. Lucas, G. M., Gratch, J., King, A., & Morency, L. P. (2014). It's only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94–100.
    Paper not yet in RePEc: Add citation now
  94. Ly, D. P. (2021). The influence of the availability heuristic on physicians in the emergency department. Annals of Emergency Medicine, 78(5), 650–657. https://doi.org/10.1016/j.annemergmed.2021.06.012.
    Paper not yet in RePEc: Add citation now
  95. Mamede, S., van Gog, T., van den Berge, K., Rikers, R. M. J. P., van Saase, J. L. C. M., van Guldener, C., & Schmidt, H. G. (2010). Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. Journal of the American Medical Association, 304(11), 1198–1203. https://doi.org/10.1001/jama.2010.1276.
    Paper not yet in RePEc: Add citation now
  96. Matthews, J. B. (2021). Truth and truthiness: Evidence, experience and clinical judgement in surgery. British Journal of Surgery, 108(7), 742–744. https://doi.org/10.1093/bjs/znab087.
    Paper not yet in RePEc: Add citation now
  97. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. The Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335.
    Paper not yet in RePEc: Add citation now
  98. Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2), 1–25. https://doi.org/10.1145/1985347.1985353.
    Paper not yet in RePEc: Add citation now
  99. Menon, N. K., Shanafelt, T. D., Sinsky, C. A., Linzer, M., Carlasare, L., Brady, K. J. S., Stillman, M. J., & Trockel, M. T. (2020). Association of physician burnout with suicidal ideation and medical errors. JAMA Network Open, 3(12), e2028780. https://doi.org/10.1001/jamanetworkopen.2020.28780.
    Paper not yet in RePEc: Add citation now
  100. Miller, A. R., & Tucker, C. (2018). Privacy protection, personalized medicine, and genetic testing. Management Science, 64(10), 4648–4668.

  101. Mullainathan, S., & Obermeyer, Z. (2022). Diagnosing physician error: A machine learning approach to low‐value health care. The Quarterly Journal of Economics, 137(2), 679–727. https://doi.org/10.1093/qje/qjab046.
    Paper not yet in RePEc: Add citation now
  102. Murray, A., Rhymer, J., & Sirmon, D. G. (2021). Humans and technology: Forms of conjoined agency in organizations. Academy of Management Review, 46(3), 552–571.
    Paper not yet in RePEc: Add citation now
  103. Nathan, V., Paul, S., Prioleau, T., Niu, L., Mortazavi, B. J., Cambone, S. A., Veeraraghavan, A., Sabharwal, A., & Jafari, R. (2018). A survey on smart homes for aging in place: Toward solutions to the specific needs of the elderly. IEEE Signal Processing Magazine, 35(5), 111–119. https://doi.org/10.1109/MSP.2018.2846286.
    Paper not yet in RePEc: Add citation now
  104. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366, 447–453. https://doi.org/10.1126/science.aax2342.
    Paper not yet in RePEc: Add citation now
  105. Ozbulak, U., Van Messem, A., & De Neve, W. (2019). Impact of adversarial examples on deep learning models for biomedical image segmentation. In D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.‐T. Yap, & A. Khan (Eds.), Medical image computing and computer assisted intervention—MICCAI 2019 (pp. 300–308). Springer International Publishing. https://doi.org/10.1007/978-3-030-32245-8_34.
    Paper not yet in RePEc: Add citation now
  106. Parekh, V., Shah, D., & Shah, M. (2020). Fatigue detection using artificial intelligence framework. Augmented Human Research, 5(1), 5. https://doi.org/10.1007/s41133-019-0023-4.
    Paper not yet in RePEc: Add citation now
  107. Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press.
    Paper not yet in RePEc: Add citation now
  108. Pfeffer, J., & Salancik, G. R. (2003). The external control of organizations: A resource dependence perspective. Stanford University Press.
    Paper not yet in RePEc: Add citation now
  109. Prasad, V., Fojo, T., & Brada, M. (2016). Precision oncology: origins, optimism, and potential. The Lancet Oncology, 17(2), e81–e86. https://doi.org/10.1016/S1470-2045(15)00620-8.
    Paper not yet in RePEc: Add citation now
  110. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866–872. https://doi.org/10.7326/M18-1990.
    Paper not yet in RePEc: Add citation now
  111. Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0.
    Paper not yet in RePEc: Add citation now
  112. Rawson, T. M., Ahmad, R., Toumazou, C., Georgiou, P., & Holmes, A. H. (2019). Artificial intelligence can improve decision‐making in infection management. Nature Human Behaviour, 3(6), 543–545. https://doi.org/10.1038/s41562-019-0583-9.

  113. Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid, F.‐M., von Tengg‐Kobligk, H., Summers, R. M., & Wiest, R. (2020). On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiology. Artificial intelligence, 2(3), 190043. https://doi.org/10.1148/ryai.2020190043.
    Paper not yet in RePEc: Add citation now
  114. Rotenstein, L. S., Torre, M., Ramos, M. A., Rosales, R. C., Guille, C., Sen, S., & Mata, D. A. (2018). Prevalence of burnout among physicians: A systematic review. Journal of the American Medical Association, 320(11), 1131. https://doi.org/10.1001/jama.2018.12777.
    Paper not yet in RePEc: Add citation now
  115. Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., Raman, R., Levinstein, B., Liu, Y., Schaekermann, M., Lee, R., Virmani, S., Widner, K., Chambers, J., Hersch, F., Peng, L., & Webster, D. R. (2022). Real‐time diabetic retinopathy screening by deep learning in a multisite national screening programme: A prospective interventional cohort study. The Lancet Digital Health, 4(4), e235–e244. https://doi.org/10.1016/S2589-7500(22)00017-6.
    Paper not yet in RePEc: Add citation now
  116. Saposnik, G., Redelmeier, D., Ruff, C. C., & Tobler, P. N. (2016). Cognitive biases associated with medical decisions: A systematic review. BMC Medical Informatics and Decision Making, 16(1), 138. https://doi.org/10.1186/s12911-016-0377-1.
    Paper not yet in RePEc: Add citation now
  117. Schneider, S., Stone, A. A., Schwartz, J. E., & Broderick, J. E. (2011). Peak and end effects in patients’ daily recall of pain and fatigue: A within‐subjects analysis. The Journal of Pain, 12(2), 228–235. https://doi.org/10.1016/j.jpain.2010.07.001.
    Paper not yet in RePEc: Add citation now
  118. Sendelbach, S., & Funk, M. (2013). Alarm fatigue. AACN Advanced Critical Care, 24(4), 378–386. https://doi.org/10.4037/NCI.0b013e3182a903f9.
    Paper not yet in RePEc: Add citation now
  119. Shanafelt, T. D., Balch, C. M., Bechamps, G., Russell, T., Dyrbye, L., Satele, D., Collicott, P., Novotny, P. J., Sloan, J., & Freischlag, J. (2010). Burnout and medical errors among American surgeons. Annals of Surgery, 251(6), 995–1000. https://doi.org/10.1097/SLA.0b013e3181bfdab3.
    Paper not yet in RePEc: Add citation now
  120. Shanafelt, T. D., West, C. P., Sinsky, C., Trockel, M., Tutty, M., Satele, D. V., Carlasare, L. E., & Dyrbye, L. N. (2019). Changes in burnout and satisfaction with work‐life integration in physicians and the general US working population between 2011 and 2017. Mayo Clinic Proceedings, 94(9), 1681–1694. https://doi.org/10.1016/j.mayocp.2018.10.023.
    Paper not yet in RePEc: Add citation now
  121. Sharma, N., Ng, A. Y., James, J. J., Khara, G., Ambrozay, E., Austin, C. C., & Kecskemethy, P. D. (2021). Retrospective large‐scale evaluation of an AI system as an independent reader for double reading in breast cancer screening. medRxiv: 2021‐02.
    Paper not yet in RePEc: Add citation now
  122. Shi, J., Gao, X., Ha, C., Wang, Y., Gao, G., & Chen, Y. (2020). Patient ADE risk prediction through hierarchical time‐aware neural network using claim codes. 2020 IEEE International Conference on Big Data (Big Data), 1388–1393. https://doi.org/10.1109/BigData50022.2020.9378336.
    Paper not yet in RePEc: Add citation now
  123. Siebig, S., Kuhls, S., Imhoff, M., Gather, U., Schölmerich, J., & Wrede, C. E. (2010). Intensive care unit alarms—How many do we need?. Critical Care Medicine, 38(2), 451–456. https://doi.org/10.1097/CCM.0b013e3181cb0888.
    Paper not yet in RePEc: Add citation now
  124. Simon, G., DiNardo, C. D., Takahashi, K., Cascone, T., Powers, C., Stevens, R., Allen, J., Antonoff, M. B., Gomez, D., Keane, P., Suarez Saiz, F., Nguyen, Q., Roarty, E., Pierce, S., Zhang, J., Hardeman Barnhill, E., Lakhani, K., Shaw, K., Smith, B., … Chin, L. (2019). Applying artificial intelligence to address the knowledge gaps in cancer care. The Oncologist, 24(6), 772–782. https://doi.org/10.1634/theoncologist.2018-0257.
    Paper not yet in RePEc: Add citation now
  125. Topol, E. (2019a). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
    Paper not yet in RePEc: Add citation now
  126. Topol, E. J. (2019b). High‐performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7.
    Paper not yet in RePEc: Add citation now
  127. Trimble, M., & Hamilton, P. (2016). The thinking doctor: Clinical decision making in contemporary medicine. Clinical Medicine, 16(4), 343–346. https://doi.org/10.7861/clinmedicine.16-4-343.
    Paper not yet in RePEc: Add citation now
  128. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131. https://doi.org/10.1126/science.185.4157.1124.
    Paper not yet in RePEc: Add citation now
  129. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574.

  130. Young, A. D., & Monroe, A. E. (2019). Autonomous morals: Inferences of mind predict acceptance of AI behavior in sacrificial moral dilemmas. Journal of Experimental Social Psychology, 85, 103870.
    Paper not yet in RePEc: Add citation now
  131. Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., & Troyanskaya, O. G. (2018). Deep learning sequence‐based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 50(8), 1171–1179. https://doi.org/10.1038/s41588-018-0160-6.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. The economic value of childhood socio-emotional skills. (2024). Del Bono, Emilia ; Garcia, Paul ; Etheridge, Ben.
    In: ISER Working Paper Series.
    RePEc:ese:iserwp:2024-01.

    Full description at Econpapers || Download paper

  2. Digital Technology Uses among Microenterprises : Why Is Productive Use So Low across Sub-Saharan Africa ?. (2023). Dutz, Mark Andrew ; Atiyas, Izak.
    In: Policy Research Working Paper Series.
    RePEc:wbk:wbrwps:10280.

    Full description at Econpapers || Download paper

  3. Accelerating Artificial Intelligence Discussions in ASEAN: Addressing Disparities, Challenges, and Regional Policy Imperatives. (2023). Prilliadi, Hilmy ; Isono, Ikumo.
    In: Working Papers.
    RePEc:era:wpaper:dp-2023-16.

    Full description at Econpapers || Download paper

  4. Progress, Evolving Paradigms and Recent Trends in Economic Analysis. (2023). Damasevicius, Robertas.
    In: Financial Economics Letters.
    RePEc:bba:j00007:v:2:y:2023:i:2:p:35-47:d:242.

    Full description at Econpapers || Download paper

  5. Employment dynamics in a rapid decarbonization of the power sector. (2023). Pichler, Anton ; Farmer, J. ; Ives, Matthew ; del Rio-Chanona, Maria R ; Bucker, Joris.
    In: INET Oxford Working Papers.
    RePEc:amz:wpaper:2023-28.

    Full description at Econpapers || Download paper

  6. Modelling artificial intelligence in economics. (2022). Naudé, Wim ; Gries, Thomas ; Naude, Wim.
    In: Journal for Labour Market Research.
    RePEc:spr:jlabrs:v:56:y:2022:i:1:d:10.1186_s12651-022-00319-2.

    Full description at Econpapers || Download paper

  7. Is Innovation Good for European Workers? Beyond the Employment Destruction/Creation Effects, Technology Adoption Affects the Working Conditions of European Workers. (2022). Mofakhami, Malo.
    In: Journal of the Knowledge Economy.
    RePEc:spr:jknowl:v:13:y:2022:i:3:d:10.1007_s13132-021-00819-5.

    Full description at Econpapers || Download paper

  8. Human Capitalists. (2022). Xiaolan, Mindy Z ; Falato, Antonio ; Eisfeldt, Andrea L.
    In: NBER Chapters.
    RePEc:nbr:nberch:14666.

    Full description at Econpapers || Download paper

  9. Where are the opportunities for growth in the professional services space?. (2021). Ribes, Edouard.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03181967.

    Full description at Econpapers || Download paper

  10. Who should pay the bill for employee upskilling?. (2021). Vranceanu, Radu ; Sutan, Angela.
    In: Working Papers.
    RePEc:hal:wpaper:hal-02977891.

    Full description at Econpapers || Download paper

  11. Artificial Intelligence, Income Distribution and Economic Growth. (2020). Naudé, Wim ; Gries, Thomas.
    In: VfS Annual Conference 2020 (Virtual Conference): Gender Economics.
    RePEc:zbw:vfsc20:224623.

    Full description at Econpapers || Download paper

  12. How labor market institutions affect technological choices. (2020). Samwer, Julia ; Chen, Chinchih.
    In: ILE Working Paper Series.
    RePEc:zbw:ilewps:42.

    Full description at Econpapers || Download paper

  13. Back to the past: the historical roots of labour-saving automation. (2020). Virgillito, Maria Enrica ; Staccioli, Jacopo.
    In: GLO Discussion Paper Series.
    RePEc:zbw:glodps:721.

    Full description at Econpapers || Download paper

  14. Artificial Intelligence, Income Distribution and Economic Growth. (2020). Naudé, Wim ; Gries, Thomas ; Naude, Wim.
    In: GLO Discussion Paper Series.
    RePEc:zbw:glodps:632.

    Full description at Econpapers || Download paper

  15. Robots, Reshoring, and the Lot of Low-Skilled Workers. (2020). Strulik, Holger ; Prettner, Klaus ; Krenz, Astrid.
    In: GLO Discussion Paper Series.
    RePEc:zbw:glodps:443.

    Full description at Econpapers || Download paper

  16. Skill Endowment, Routinisation and Digital Technologies: Evidence from U.S. Metropolitan Areas.. (2020). Quatraro, Francesco ; Orsatti, Gianluca ; Fusillo, Fabrizio ; Consoli, Davide.
    In: Department of Economics and Statistics Cognetti de Martiis. Working Papers.
    RePEc:uto:dipeco:202025.

    Full description at Econpapers || Download paper

  17. Automation, globalisation and relative wages: An empirical analysis of winners and losers. (2020). Foster-McGregor, Neil ; Gravina, Antonio Francesco.
    In: MERIT Working Papers.
    RePEc:unm:unumer:2020040.

    Full description at Econpapers || Download paper

  18. Deskilling among Manufacturing Production Workers. (2020). Kunst, David.
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20190050.

    Full description at Econpapers || Download paper

  19. Back to the past: the historical roots of labour-saving automation. (2020). Virgillito, Maria Enrica ; Staccioli, Jacopo.
    In: LEM Papers Series.
    RePEc:ssa:lemwps:2020/34.

    Full description at Econpapers || Download paper

  20. Place-Based Policies and Spatial Disparities across European Cities. (2020). von Ehrlich, Maximilian ; Overman, Henry.
    In: Diskussionsschriften.
    RePEc:rdv:wpaper:credresearchpaper27.

    Full description at Econpapers || Download paper

  21. When robots do (not) enhance job quality: The role of innovation regimes. (2020). Pompei, Fabrizio ; Kleinknecht, Alfred ; Damiani, Mirella.
    In: MPRA Paper.
    RePEc:pra:mprapa:103059.

    Full description at Econpapers || Download paper

  22. The wrong kind of AI? Artificial intelligence and the future of labour demand. (2020). Restrepo, Pascual ; Acemoglu, Daron.
    In: Cambridge Journal of Regions, Economy and Society.
    RePEc:oup:cjrecs:v:13:y:2020:i:1:p:25-35..

    Full description at Econpapers || Download paper

  23. Neither Left-Behind nor Superstar: Ordinary Winners of Digitalization at the Ballot. (2020). Kurer, Thomas ; Scholl, Nikolas ; Gallego, Aina.
    In: SocArXiv.
    RePEc:osf:socarx:mu3tw.

    Full description at Econpapers || Download paper

  24. Automation and Labour in India: Policy Implications of Job Polarisation pre and post COVID-19 crisis. (2020). Nippani, Abishek.
    In: SocArXiv.
    RePEc:osf:socarx:h9gaw.

    Full description at Econpapers || Download paper

  25. Competing with Robots: Firm-Level Evidence from France. (2020). Restrepo, Pascual ; Lelarge, Claire ; Acemoglu, Daron.
    In: NBER Working Papers.
    RePEc:nbr:nberwo:26738.

    Full description at Econpapers || Download paper

  26. Robots and Worker Voice: An Empirical Exploration. (2020). Burdín, Gabriel ; Belloc, Filippo ; Landini, Fabio.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp13799.

    Full description at Econpapers || Download paper

  27. Artificial Intelligence, Income Distribution and Economic Growth. (2020). Naudé, Wim ; Gries, Thomas ; Naude, Wim.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp13606.

    Full description at Econpapers || Download paper

  28. Moving from a Poor Economy to a Rich One: The Contradictory Roles of Technology and Job Tasks. (2020). Yashiv, Eran.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp13131.

    Full description at Econpapers || Download paper

  29. Induced Innovation: Evidence from Chinas Secondary Industry. (2020). Zhao, Min Qiang (Kent) ; Wang, Xiaojun ; Fleisher, Belton ; McGuire, William H.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp13072.

    Full description at Econpapers || Download paper

  30. The labour market impact of robotisation in Europe. (2020). Urzì Brancati, Maria Cesira ; Klenert, David ; Fernandez-Macias, Enrique ; Antón, José Ignacio ; Urzi, Maria Cesira ; Anton, Jose-Ignacio ; Alaveras, Georgios.
    In: JRC Working Papers on Labour, Education and Technology.
    RePEc:ipt:laedte:202006.

    Full description at Econpapers || Download paper

  31. Heterogeneous Relationships between Automation Technologies and Skilled Labor: Evidence from a Firm Survey. (2020). MORIKAWA, MASAYUKI.
    In: Discussion papers.
    RePEc:eti:dpaper:20004.

    Full description at Econpapers || Download paper

  32. Place-based policies and spatial disparities across European cities. (2020). von Ehrlich, Maximilian ; Overman, Henry.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:105168.

    Full description at Econpapers || Download paper

  33. The rise of robots and the fall of routine jobs. (2020). Wacker, Konstantin ; Miroudot, Sébastien ; de Vries, Gaaitzen ; Gentile, Elisabetta.
    In: Labour Economics.
    RePEc:eee:labeco:v:66:y:2020:i:c:s0927537120300890.

    Full description at Econpapers || Download paper

  34. Digitization-based automation and occupational dynamics. (2020). Persson, Lars ; Norbäck, Pehr-Johan ; Heyman, Fredrik ; Gardberg, Malin ; Norback, Pehr-Johan.
    In: Economics Letters.
    RePEc:eee:ecolet:v:189:y:2020:i:c:s0165176520300501.

    Full description at Econpapers || Download paper

  35. Virtually everywhere? Digitalisation and the euro area and EU economies. (2020). Vivian, Lara ; Petroulakis, Filippos ; Morgan, Julian ; Labhard, Vincent ; Jarvis, Valerie ; Anderton, Robert.
    In: Occasional Paper Series.
    RePEc:ecb:ecbops:2020244.

    Full description at Econpapers || Download paper

  36. Twisting the Demand Curve: Digitalization and the Older Workforce. (2020). Freeman, Richard ; Davis, James ; Barth, Erling ; McElheran, Kristina.
    In: Working Papers.
    RePEc:cen:wpaper:20-37.

    Full description at Econpapers || Download paper

  37. Place-Based Policies and Spatial Disparities across European Cities. (2020). von Ehrlich, Maximilian ; Overman, Henry.
    In: Journal of Economic Perspectives.
    RePEc:aea:jecper:v:34:y:2020:i:3:p:128-49.

    Full description at Econpapers || Download paper

  38. Does automation lead to de-industrialization in emerging economies? Evidence from Brazil. (2019). Stemmler, Henry.
    In: University of Göttingen Working Papers in Economics.
    RePEc:zbw:cegedp:382.

    Full description at Econpapers || Download paper

  39. OK Computer: The Creation and Integration of AI in Europe. (2019). Kogler, Dieter ; Hynes, Ryan ; Davies, Ronald ; Buarque, Bernardo S.
    In: Working Papers.
    RePEc:ucn:wpaper:201911.

    Full description at Econpapers || Download paper

  40. Fewer babies and more robots: economic growth in a new era of demographic and technological changes. (2019). Jimeno, Juan F.
    In: SERIEs: Journal of the Spanish Economic Association.
    RePEc:spr:series:v:10:y:2019:i:2:d:10.1007_s13209-019-0190-z.

    Full description at Econpapers || Download paper

  41. Explaining the labor share: automation vs labor market institutions. (2019). Gil, Pedro ; Guimares, Lus.
    In: Economics Working Papers.
    RePEc:qub:wpaper:1901.

    Full description at Econpapers || Download paper

  42. Looking ahead at the effects of automation in an economy with matching frictions. (2019). Gil, Pedro ; Guimares, Luis.
    In: MPRA Paper.
    RePEc:pra:mprapa:96238.

    Full description at Econpapers || Download paper

  43. Explaining the labor share: automation vs labor market institutions. (2019). Gil, Pedro ; Guimares, Lus.
    In: CEF.UP Working Papers.
    RePEc:por:cetedp:1901.

    Full description at Econpapers || Download paper

  44. Effort: The Unrecognized Contributor to US Income Inequality. (2019). Leamer, Edward ; Fuentes, Rodrigo.
    In: NBER Working Papers.
    RePEc:nbr:nberwo:26421.

    Full description at Econpapers || Download paper

  45. The Wrong Kind of AI? Artificial Intelligence and the Future of Labor Demand. (2019). Restrepo, Pascual ; Acemoglu, Daron.
    In: NBER Working Papers.
    RePEc:nbr:nberwo:25682.

    Full description at Econpapers || Download paper

  46. Behind the headline number: Why not to rely on Frey and Osborne’s predictions of potential job loss from automation. (2019). Coelli, Michael ; Borland, Jeff.
    In: Melbourne Institute Working Paper Series.
    RePEc:iae:iaewps:wp2019n10.

    Full description at Econpapers || Download paper

  47. Recent Employment Growth in Cities, Suburbs, and Rural Communities. (2019). Foote, Christopher ; Couillard, Benjamin.
    In: Working Papers.
    RePEc:fip:fedbwp:87417.

    Full description at Econpapers || Download paper

  48. Digitising Agrifood: Pathways and Challenges. (2019). Reynolds, Nicole ; Laurer, Moritz ; Cohen, Gal ; Renda, Andrea.
    In: CEPS Papers.
    RePEc:eps:cepswp:25701.

    Full description at Econpapers || Download paper

  49. High-Quality Versus Low-Quality Growth in Turkey - Causes and Consequences. (2019). Acemoglu, Daron ; Uer, Murat.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:14070.

    Full description at Econpapers || Download paper

  50. Automation and labor demand in European countries: A task-based approach to wage bill decomposition. (2019). Lábaj, Martin ; Vitalos, Materj ; Labaj, Martin.
    In: Department of Economic Policy Working Paper Series.
    RePEc:brt:depwps:021.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-29 13:51:42 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.