create a website

A martingale representation theorem and valuation of defaultable securities. (2020). Choulli, Tahir ; Vanmaele, Michele ; Daveloose, Catherine.
In: Mathematical Finance.
RePEc:bla:mathfi:v:30:y:2020:i:4:p:1527-1564.

Full description at Econpapers || Download paper

Cited: 13

Citations received by this document

Cites: 44

References cited by this document

Cocites: 22

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Linear reflected backward stochastic differential equations arising from vulnerable claims in markets with random horizon. (2024). Choulli, T ; Alsheyab, S.
    In: Papers.
    RePEc:arx:papers:2408.04758.

    Full description at Econpapers || Download paper

  2. Super-hedging-pricing formulas and Immediate-Profit arbitrage for market models under random horizon. (2024). Choulli, Tahir ; Lepinette, Emmanuel.
    In: Papers.
    RePEc:arx:papers:2401.05713.

    Full description at Econpapers || Download paper

  3. Mean–variance hedging of contingent claims with random maturity. (2023). Zervos, Mihail ; Kladvko, Kamil.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:33:y:2023:i:4:p:1213-1247.

    Full description at Econpapers || Download paper

  4. Log-optimal and numéraire portfolios for market models stopped at a random time. (2022). Choulli, Tahir ; Yansori, Sina.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:26:y:2022:i:3:d:10.1007_s00780-022-00477-8.

    Full description at Econpapers || Download paper

  5. Bi-revealed utilities in a defaultable universe : a new point of view on consumption.. (2022). Mohamed, Mrad ; Caroline, Hillairet ; Karoui, EL.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03919186.

    Full description at Econpapers || Download paper

  6. Explicit description of all deflators for market models under random horizon with applications to NFLVR. (2022). Choulli, Tahir ; Yansori, Sina.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:151:y:2022:i:c:p:230-264.

    Full description at Econpapers || Download paper

  7. Vulnerable European and American Options in a Market Model with Optional Hazard Process. (2022). Liu, Ruyi ; Rutkowski, Marek.
    In: Papers.
    RePEc:arx:papers:2212.12860.

    Full description at Econpapers || Download paper

  8. Well-posedness and penalization schemes for generalized BSDEs and reflected generalized BSDEs. (2022). Liu, Ruyi ; Rutkowski, Marek.
    In: Papers.
    RePEc:arx:papers:2212.12854.

    Full description at Econpapers || Download paper

  9. Log-optimal portfolio after a random time: Existence, description and sensitivity analysis. (2022). Choulli, Tahir ; Alharbi, Ferdoos.
    In: Papers.
    RePEc:arx:papers:2204.03798.

    Full description at Econpapers || Download paper

  10. Representation for martingales living after a random time with applications. (2022). Choulli, Tahir ; Alharbi, Ferdoos.
    In: Papers.
    RePEc:arx:papers:2203.11072.

    Full description at Econpapers || Download paper

  11. Mortality/Longevity Risk-Minimization with or without Securitization. (2021). Choulli, Tahir ; Vanmaele, Michele ; Daveloose, Catherine.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:14:p:1629-:d:591860.

    Full description at Econpapers || Download paper

  12. Reflected backward stochastic differential equations under stopping with an arbitrary random time. (2021). Choulli, Tahir ; Alsheyab, Safa.
    In: Papers.
    RePEc:arx:papers:2107.11896.

    Full description at Econpapers || Download paper

  13. Generalized BSDEs with random time horizon in a progressively enlarged filtration. (2021). Rutkowski, Marek ; Li, Libo ; Aksamit, Anna.
    In: Papers.
    RePEc:arx:papers:2105.06654.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aksamit, A., Choulli, T., Deng, J., & Jeanblanc, M. (2014). Arbitrages in a progressive enlargement setting. In C. Hillairet, M. Jeanblanc, & Y. Jiao (Eds.), Peking University series in mathematics: Arbitrage, credit and informational risks (Vol. 5, pp. 53–86). Hackensack, NJ: World Scientific.
    Paper not yet in RePEc: Add citation now
  2. Aksamit, A., Choulli, T., Deng, J., & Jeanblanc, M. (2017). No‐arbitrage up to random horizon for quasi‐left‐continuous models. Finance and Stochastics, 21(4), 1103–1139. https://doi.org/10.1007/s00780‐017‐0337‐3.

  3. Aksamit, A., Choulli, T., Deng, J., & Jeanblanc, M. (2019). No‐arbitrage under additional information for thin semimartingale models. Stochastic Processes and their Applications, 129(9), 3080–3115. https://doi.org/10.1016/j.spa.2018.09.005.

  4. Artzner, P., & Delbaen, F. (1995). Default risk insurance and incomplete markets. Mathematical Finance, 5(3), 187–195. https://doi.org/10.1111/j.1467‐9965.1995.tb00064.x.

  5. Azéma, J., Jeulin, Th., Knight, F., & Yor, M. (1993). Le théorème d'arrêt en une fin d'ensemble prévisible. Séminaire de Probabilités de Strasbourg, 27, 133–158.
    Paper not yet in RePEc: Add citation now
  6. Bélanger, A., Shreve, S. E., & Wong, D. (2004). A general framework for pricing credit risk. Mathematical Finance, 14(3), 317–350. https://doi.org/10.1111/j.0960‐1627.2004.t01‐1‐00193.x.

  7. Bielecki, T., & Rutkowski, M. (2002). Credit risk: Modeling, Valuation and hedging. Berlin: Springer Finance.
    Paper not yet in RePEc: Add citation now
  8. Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. Journal of Finance, 31(2), 351–367. https://doi.org/10.1111/j.1540‐6261.1976.tb01891.x.

  9. Blanchet‐Scalliet, C., & Jeanblanc, M. (2004). Hazard rate for credit risk and hedging defaultable contingent claims. Finance and Stochastics, 8(1), 145–159. https://doi.org/10.1007/s00780‐003‐0108‐1.

  10. Carr, P., & Linetsky, V. (2006). A jump to default extended CEV model: An application of Bessel processes. Finance and Stochastics, 10(3), 303–330. https://doi.org/10.1007/s00780‐006‐0012‐6.

  11. Choulli, T., & Deng, J. (2017). No‐arbitrage for informational discrete time market models. Stochastics, 89(3–4), 628–653. https://doi.org/10.1080/17442508.2016.1276907.
    Paper not yet in RePEc: Add citation now
  12. Davydov, D., Linetsky, V., & Lotz, C. (1999). The hazard‐rate approach to pricing risky debt: Two analytically tractable examples. Working Paper, University of Michigan and University of Bonn.
    Paper not yet in RePEc: Add citation now
  13. Dellacherie, M., Maisonneuve, B., & Meyer, P.‐A. (1992). Probabilités et Potentiel, chapitres XVII‐XXIV: Processus de Markov (fin), Compliéments de calcul stochastique. Paris: Hermann.
    Paper not yet in RePEc: Add citation now
  14. Duffie, D., & Lando, D. (2001). Term structures of credit spreads with incomplete accounting information. Econometrica, 69(3), 633–664. https://doi.org/10.1111/1468‐0262.00208.

  15. Duffie, D., & Singleton, K. J. (1997). An econometric model of the term structure of interest‐rate swap yields. Journal of Finance, 52(4), 1287–1321. https://doi.org/10.1111/j.1540‐6261.1997.tb01111.x.

  16. Duffie, D., & Singleton, K. J. (1999). Modeling term structures of defaultable bonds. Review of Financial Studies, 12(4), 687–720. https://doi.org/10.1093/rfs/12.4.687.

  17. Duffie, D., Schroder, M., & Skiadas, C. (1996). Recursive valuation of defaultable securities and the timing of resolution of uncertainty. Annals of Applied Probability, 6(4), 1075–1090. https://doi.org/10.1214/aoap/1035463324.
    Paper not yet in RePEc: Add citation now
  18. Elliott, R. J., Jeanblanc, M., & Yor, M. (2000). On models of default risk. Mathematical Finance, 10(2), 179–195. https://doi.org/10.1111/1467‐9965.00088.

  19. Gehmlich, F., & Schmidt, Th. (2018). Dynamic defaultable term structure modeling beyond the intensity paradigm. Mathematical Finance, 28(1), 211–239. https://doi.org/10.1111/mafi.12138.

  20. Giesecke, K. (2006) Default and information. Journal of Economic Dynamics and Control, 30(11), 2281–2303. https://doi.org/10.1016/j.jedc.2005.07.003.

  21. Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53–85. https://doi.org/10.1111/j.1540‐6261.1995.tb05167.x.

  22. Jeanblanc, M., & Song, S. (2011a). An explicit model of default time with given survival probability. Stochastic Processes and their Applications, 121(8), 1678–1704. https://doi.org/10.1016/j.spa.2011.04.002.
    Paper not yet in RePEc: Add citation now
  23. Jeanblanc, M., & Song, S. (2011b). Random times with given survival probability and their martingale decomposition formula. Stochastic Processes and their Applications, 121(6), 1389–1410. https://doi.org/10.1016/j.spa.2011.03.003.
    Paper not yet in RePEc: Add citation now
  24. Jeulin, T. (1980). Semi‐martingales et grossissement de filtration, Vol. 833. Lecture Notes in Mathematics. Berlin: Springer.
    Paper not yet in RePEc: Add citation now
  25. Jiao, Y., & Li, S. (2018). Modeling sovereign risks: From a hybrid model to the generalized density approach. Mathematical Finance, 28(1), 240–267. https://doi.org/10.1111/mafi.12136.

  26. Lando, D. (1998). On Cox processes and credit risky securities. Review of Derivatives Research, 2(2), 99–120. https://doi.org/10.1007/BF01531332.
    Paper not yet in RePEc: Add citation now
  27. Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal capital structure. Journal of Finance, 49(4), 1213–1252. https://doi.org/10.1111/j.1540‐6261.1994.tb02452.x.

  28. Leland, H. E., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. The Journal of Finance, 51(3), 987–1019. https://doi.org/10.1111/j.1540‐6261.1996.tb02714.x.

  29. Linetsky, V. (2006). Pricing equity derivatives subject to bankruptcy. Mathematical Finance, 16(2), 255–282. https://doi.org/10.1111/j.1467‐9965.2006.00271.x.

  30. Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. Journal of Finance, 50(3), 789–819. https://doi.org/10.1111/j.1540‐6261.1995.tb04037.x.

  31. Lotz, C. (1998). Locally minimizing the credit risk. FMG Discussion Papers dp281, Financial Markets Group. Retrieved from https://ideas.repec.org/p/fmg/fmgdps/dp281.html.
    Paper not yet in RePEc: Add citation now
  32. Madan, D., & Unal, H. (1998). Pricing the risks of default. Review of Derivatives Research, 2(2), 121–160. https://doi.org/10.1007/BF01531333.
    Paper not yet in RePEc: Add citation now
  33. Madan, D., & Unal, H. (2000). A two‐factor hazard rate model for pricing risky debt and the term structure of credit spreads. Journal of Financial and Quantitative Analysis, 35(1), 43–65. https://doi.org/10.2307/2676238.

  34. Mendoza‐Arriaga, R., & Linetsky, V. (2014). Time‐changed CIR default intensities with two‐sided mean‐reverting jumps. Annals of Applied Probability, 24(2), 811–856. https://doi.org/10.1214/13‐AAP936.
    Paper not yet in RePEc: Add citation now
  35. Mendoza‐Arriaga, R., & Linetsky, V. (2016). Multivariate subordination of Markov processes with financial applications. Mathematical Finance, 26(4), 699–747. https://doi.org/10.1111/mafi.12061.

  36. Mendoza‐Arriaga, R., Carr, P., & Linetsky, V. (2010). Time‐changed Markov processes in unified credit‐equity modeling. Mathematical Finance, 20(4), 527–569. https://doi.org/10.1111/j.1467‐9965.2010.00411.x.
    Paper not yet in RePEc: Add citation now
  37. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449–470. https://doi.org/10.1111/j.1540‐6261.1974.tb03058.x.

  38. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1), 125–144. https://doi.org/10.1016/0304‐405X(76)90022‐2.

  39. Nikeghbali, A. (2006). An essay on the general theory of stochastic processes. Probability Surveys, 3, 345–412. https://doi.org/10.1214/154957806000000104.
    Paper not yet in RePEc: Add citation now
  40. Nikeghbali, A., & Yor, M. (2005). A definition and some characteristic properties of pseudo‐stopping times. Annals of Probability, 33(5), 1804–1824. https://doi.org/10.1214/009117905000000297.
    Paper not yet in RePEc: Add citation now
  41. Pye, G. (1974). Gauging the default premium. Financial Analysts Journal, 30(1), 49–52. URL http://www.jstor.org/stable/4529657.
    Paper not yet in RePEc: Add citation now
  42. Ramaswamy, K., & Sundaresan, S. M. (1986). The valuation of floating‐rate instruments: Theory and evidence. Journal of Financial Economics, 17(2), 251–272. https://doi.org/10.1016/0304‐405X(86)90066‐8.

  43. Schönbucher, P. J. (1998). Term structure modelling of defaultable bonds. Review of Derivatives Research, 2(2), 161–192. https://doi.org/10.1007/BF01531334.
    Paper not yet in RePEc: Add citation now
  44. Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11), 2015–2040. https://doi.org/10.1016/S0378‐4266(00)00168‐0.

Cocites

Documents in RePEc which have cited the same bibliography

  1. The value of partial information. (2025). Mostovyi, Oleksii ; Ernst, Philip A.
    In: Papers.
    RePEc:arx:papers:2505.08943.

    Full description at Econpapers || Download paper

  2. Linear reflected backward stochastic differential equations arising from vulnerable claims in markets with random horizon. (2024). Choulli, T ; Alsheyab, S.
    In: Papers.
    RePEc:arx:papers:2408.04758.

    Full description at Econpapers || Download paper

  3. The indifference value of the weak information. (2024). Mostovyi, Oleksii ; Baudoin, Fabrice.
    In: Papers.
    RePEc:arx:papers:2408.02137.

    Full description at Econpapers || Download paper

  4. The second-order Esscher martingale densities for continuous-time market models. (2024). Choulli, Tahir ; Vanmaele, Michele ; Elazkany, Ella.
    In: Papers.
    RePEc:arx:papers:2407.03960.

    Full description at Econpapers || Download paper

  5. The insider problem in the trinomial model: a discrete-time jump process approach. (2023). Halconruy, H'Elene.
    In: Papers.
    RePEc:arx:papers:2106.15208.

    Full description at Econpapers || Download paper

  6. Log-optimal and numéraire portfolios for market models stopped at a random time. (2022). Choulli, Tahir ; Yansori, Sina.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:26:y:2022:i:3:d:10.1007_s00780-022-00477-8.

    Full description at Econpapers || Download paper

  7. Explicit description of all deflators for market models under random horizon with applications to NFLVR. (2022). Choulli, Tahir ; Yansori, Sina.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:151:y:2022:i:c:p:230-264.

    Full description at Econpapers || Download paper

  8. Characterisation of L0-boundedness for a general set of processes with no strictly positive element. (2022). Balint, Daniel Agoston.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:147:y:2022:i:c:p:51-75.

    Full description at Econpapers || Download paper

  9. Log-optimal portfolio after a random time: Existence, description and sensitivity analysis. (2022). Choulli, Tahir ; Alharbi, Ferdoos.
    In: Papers.
    RePEc:arx:papers:2204.03798.

    Full description at Econpapers || Download paper

  10. Mortality/Longevity Risk-Minimization with or without Securitization. (2021). Choulli, Tahir ; Vanmaele, Michele ; Daveloose, Catherine.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:14:p:1629-:d:591860.

    Full description at Econpapers || Download paper

  11. Reflected backward stochastic differential equations under stopping with an arbitrary random time. (2021). Choulli, Tahir ; Alsheyab, Safa.
    In: Papers.
    RePEc:arx:papers:2107.11896.

    Full description at Econpapers || Download paper

  12. Generalized BSDEs with random time horizon in a progressively enlarged filtration. (2021). Rutkowski, Marek ; Li, Libo ; Aksamit, Anna.
    In: Papers.
    RePEc:arx:papers:2105.06654.

    Full description at Econpapers || Download paper

  13. Explicit description of all deflators for market models under random horizon with applications to NFLVR. (2021). Choulli, Tahir ; Yansori, Sina.
    In: Papers.
    RePEc:arx:papers:1803.10128.

    Full description at Econpapers || Download paper

  14. Filtration shrinkage, the structure of deflators, and failure of market completeness. (2020). Ruf, Johannes ; Kardaras, Constantinos.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:24:y:2020:i:4:d:10.1007_s00780-020-00435-2.

    Full description at Econpapers || Download paper

  15. A martingale representation theorem and valuation of defaultable securities. (2020). Choulli, Tahir ; Vanmaele, Michele ; Daveloose, Catherine.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:30:y:2020:i:4:p:1527-1564.

    Full description at Econpapers || Download paper

  16. Quadratic Hedging for Sequential Claims with Random Weights in Discrete Time. (2020). Deng, Jun ; Zou, Bin.
    In: Papers.
    RePEc:arx:papers:2005.06015.

    Full description at Econpapers || Download paper

  17. Filtration shrinkage, the structure of deflators, and failure of market completeness. (2020). Ruf, Johannes ; Kardaras, Constantinos.
    In: Papers.
    RePEc:arx:papers:1912.04652.

    Full description at Econpapers || Download paper

  18. Log-optimal portfolio and num\eraire portfolio for market models stopped at a random time. (2020). Choulli, Tahir ; Yansori, Sina.
    In: Papers.
    RePEc:arx:papers:1810.12762.

    Full description at Econpapers || Download paper

  19. No-arbitrage under additional information for thin semimartingale models. (2019). Choulli, Tahir ; Jeanblanc, Monique ; Deng, Jun ; Aksamit, Anna.
    In: Stochastic Processes and their Applications.
    RePEc:eee:spapps:v:129:y:2019:i:9:p:3080-3115.

    Full description at Econpapers || Download paper

  20. No-arbitrage under a class of honest times. (2018). Choulli, Tahir ; Jeanblanc, Monique ; Deng, Jun ; Aksamit, Anna.
    In: Finance and Stochastics.
    RePEc:spr:finsto:v:22:y:2018:i:1:d:10.1007_s00780-017-0345-3.

    Full description at Econpapers || Download paper

  21. Log-optimal portfolio without NFLVR: existence, complete characterization, and duality. (2018). Choulli, Tahir ; Yansori, Sina.
    In: Papers.
    RePEc:arx:papers:1807.06449.

    Full description at Econpapers || Download paper

  22. Mortality/longevity Risk-Minimization with or without securitization. (2018). Choulli, Tahir ; Vanmaele, Michele ; Daveloose, Catherine.
    In: Papers.
    RePEc:arx:papers:1805.11844.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-17 19:09:11 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.