Akyildirim, E., Guney, I. E., Rochet, J. C., & Soner, H. M. (2014). Optimal dividend policy with random interest rates. Journal of Mathematical Economics, 51, 93–101.
- Aronson, D. G. (1967). Bounds for the fundamental solution of a parabolic equation. Bulletin of the American Mathematical Society, 73(6), 890–896.
Paper not yet in RePEc: Add citation now
Avanzi, B. (2009). Strategies for dividend distribution: A review. North American Actuarial Journal, 13(2), 217–251.
- Bass, R. F. (1998). Diffusions and elliptic operators. Springer‐Verlag.
Paper not yet in RePEc: Add citation now
Bayraktar, E., & Egami, M. (2010). A unified treatment of dividend payment problems under fixed cost and implementation delays. Mathematical Methods of Operations Research, 71(2), 325–351.
Bayraktar, E., Kyprianou, A. E., & Yamazaki, K. (2013). On optimal dividends in the dual model. ASTIN Bull, 43(3), 359–373.
- Belhaj, M. (2010). Optimal dividend payments when cash reserves follow a jump‐diffusion process. Mathematical Finance, 20(2), 313–325.
Paper not yet in RePEc: Add citation now
- Bensoussan, A., & Lions, J. L. (1982). Applications of variational inequalities in stochastic control. Studies in mathematics and its applications (vol. 12). North‐Holland.
Paper not yet in RePEc: Add citation now
- Borodin, A. N., & Salminen, P. (2002). Handbook of Brownian motion ‐ Facts and formulae (2nd ed.). Springer.
Paper not yet in RePEc: Add citation now
- Cadenillas, A., Sarkar, S., & Zapatero, F. (2007). Optimal dividend policy with mean‐reverting cash reservoir. Mathematical Finance, 17, 81–110.
Paper not yet in RePEc: Add citation now
Cheng, Z. (2017). Optimal dividends in the dual risk model under a stochastic interest rate. International Journal of Financial Engineering, 4(1), 1750010, 16 pp.
- Chiarolla, M., & De Angelis, T. (2016). Optimal stopping of a hilbert space valued diffusion: An infinite dimensional variational inequality. Applied Mathematics and Optimization, 73(2), 271–312.
Paper not yet in RePEc: Add citation now
- De Angelis, T. (2020a). Stopping spikes, continuation bays and other features of optimal stopping with finite‐time horizon. Accepted in Electronic Journal of Probability Preprint arXiv:2009.01276.
Paper not yet in RePEc: Add citation now
De Angelis, T. (2020b). Optimal dividends with partial information and stopping of a degenerate reflecting diffusion. Finance and Stochastics, 24(1), 71–123.
De Angelis, T., & Ekström, E. (2017). The dividend problem with a finite horizon. The Annals of Applied Probability, 27(6), 3525–3546.
- De Angelis, T., & Peskir, G. (2020). Global C1$C^1$ regularity of the value function in optimal stopping problems. The Annals of Applied Probability, 30(3), 1007–1031.
Paper not yet in RePEc: Add citation now
- De Finetti, B. (1957). Su un'impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth International Congress of Actuaries, 2(1), 433–443.
Paper not yet in RePEc: Add citation now
- Duffie, D. (2001). Dynamic asset pricing theory (3rd ed.). Princeton University Press.
Paper not yet in RePEc: Add citation now
- Dufresne, D. (2001). The integrated square root process. Research Paper number 90, Centre for Actuarial Studies, Department of Economics, University of Melbourne.
Paper not yet in RePEc: Add citation now
- Dynkin, E. B. (1965). Markov processes I & II Die Grundlehren der mathematischen wissenschaften in einzeldarstellungen Vol. 121/122.
Paper not yet in RePEc: Add citation now
Eisenberg, J. (2015). Optimal dividends under a stochastic interest rate. Insurance: Mathematics and Economics, 65, 259–266.
Eisenberg, J., & Krühner, P. (2017). A note on the optimal dividends paid in a foreign currency. Annals of Actuarial Science, 11(1), 67–73.
- Eisenberg, J., & Mishura, Y. (2018). An exponential Cox‐Ingersoll‐Ross process as discounting factor. arXiv: 1808.10355.
Paper not yet in RePEc: Add citation now
Ferrari, G., & Schuhmann, P. (2019). An optimal dividend problem with capital injections over a finite horizon. SIAM Journal on Control and Optimization, 57(4), 2686–2719.
- Fleming, W. H., & Soner, H. M. (2006). Controlled Markov processes and viscosity solutions. Springer Science & Business Media, Vol.25.
Paper not yet in RePEc: Add citation now
Frederick, S., Loewenstein, G., & O'Donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351–401.
- Friedman, A. (1964). Partial differential equations of parabolic type. Prentice Hall.
Paper not yet in RePEc: Add citation now
- Grandits, P. (2013). Optimal consumption in a Brownian model with absorption and finite time horizon. Applied Mathematics & Optimization, 67(2), 197–241.
Paper not yet in RePEc: Add citation now
- Grandits, P. (2014). Existence and asymptotic behavior of an optimal barrier for an optimal consumption problem in a Brownian model with absorption and finite time horizon. Applied Mathematics & Optimization, 69(2), 233–271.
Paper not yet in RePEc: Add citation now
Grandits, P. (2015). An optimal consumption problem in finite time with a constraint on the ruin probability. Finance and Stochastics, 19(4), 791–847.
- Harrison, G. W., Rutstrom, E. E., & Williams, M. B. (2005). Eliciting risk and time preferences using field experiments: Some methodological issues. In: Carpenter, J., Harrison, G. W., and List, J. A. eds., Field Experiments in Economics, Vol. 10 (Research in Experimental Economics). JAI Press.
Paper not yet in RePEc: Add citation now
- Jeanblanc‐Piqué, M., & Shiryaev, A. (1995). Optimization of the flow of dividends. Russian Mathematical Surveys, 50(2), 257–277.
Paper not yet in RePEc: Add citation now
- Jeanblanc, M., Yor, M., & Chesney, M. (2009). Mathematical methods for financial markets. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Jiang, Z. (2015). Optimal dividend policy when cash reserves follow a jump‐diffusion process under Markov‐regime switching. Journal of Applied Probability, 52(1), 209–223.
Paper not yet in RePEc: Add citation now
Jiang, Z. (2018). Optimal barrier strategy for spectrally negative léy process discounted by a class of exponential Lévy processes. Annals of Actuarial Science, 12(2), 326–337.
Jiang, Z., & Pistorius, M. (2012). Optimal dividend distribution under markov regime switching. Finance and Stochastics, 16, 449–476.
- Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus. Graduate texts in mathematics (vol. 113, 2nd ed.) Springer‐Verlag.
Paper not yet in RePEc: Add citation now
- Karatzas, I., & Shreve, S. E. (1998). Methods of mathematical finance. Applications of mathematics (New York) (vol. 39). Springer‐Verlag.
Paper not yet in RePEc: Add citation now
- Lions, P. L., & Sznitman, A. S. (1984). Stochastic differential equations with reflecting boundary conditions. Communications on Pure and Applied Mathematics, 37, 511–537.
Paper not yet in RePEc: Add citation now
Lokka, A., & Zervos, M. (2008). Optimal dividend and issuance of equity policies in the presence of proportional costs. Insurance: Mathematics and Economics, 42, 954–961.
- Menaldi, J. L. (1980). On the optimal stopping time problem for degenerate diffusions. SIAM Journal on Control and Optimization, 18(6), 697–721.
Paper not yet in RePEc: Add citation now
- Peskir, G. (2006). On reflecting Brownian motion with drift. Proc. 37th ISCIE Int. Symp. Stoch. Syst. Theory Applic., Inst. Systems Control Inform. Engrs., Ibaraki, Osaka, 1–5.
Paper not yet in RePEc: Add citation now
- Peskir, G. (2019). Continuity of the optimal stopping boundary for two‐dimensional diffusions. The Annals of Applied Probability, 29(1), 505–530.
Paper not yet in RePEc: Add citation now
- Peskir, G., & Shiryaev, A. N. (2006). Optimal stopping and free boundary problems. Birkhäuser.
Paper not yet in RePEc: Add citation now
Radner, R., & Shepp, L. (1996). Risk vs. profit potential: A model for corporate strategy. Journal of Economic Dynamics and Control, 20, 1373–1393.
Reppen, M., Rochet, J. C., & Soner, H. M. (2020). Optimal dividend policies with random profitability. Mathematical Finance, 30(1), 228–259.
- Schmidli, H. (2008). Stochastic control in insurance. Springer‐Verlag, Berlin.
Paper not yet in RePEc: Add citation now
Sethi, S. P., & Taksar, M. I. (2002). Optimal financing of a corporation subject to random returns. Mathematical Finance, 12(2), 155–172.
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, XIX(3), 425–442.
- Shiryaev, A. N. (2008). Optimal stopping rules. Stochastic modelling and applied probability 8 (Reprint of the 1978 translation), Springer‐Verlag.
Paper not yet in RePEc: Add citation now
- Shreve, S. E., Lehoczky, J. P., & Gaver, D. P. (1984). Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM Journal on Control and Optimization, 22(1), 55–75.
Paper not yet in RePEc: Add citation now
Tan, J., Li, C., Li, Z., Yang, X., & Zhang, B. (2015). Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates. Mathematical Methods of Operations Research, 82, 61–83.
Xie, J. H., & Zou, W. (2010). Expected present value of total dividends in a delayed claims risk model under stochastic interest rates. Insurance: Mathematics and Economics, 46(2), 415–422.