create a website

Pathwise CVA regressions with oversimulated defaults. (2023). Crepey, Stephane ; Abbasturki, Lokman A ; Saadeddine, Bouazza.
In: Mathematical Finance.
RePEc:bla:mathfi:v:33:y:2023:i:2:p:274-307.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 35

References cited by this document

Cocites: 20

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. CVA Sensitivities, Hedging and Risk. (2024). Cr, St'Ephane ; Nguyen, Hoang ; Saadeddine, Bouazza ; Li, Botao.
    In: Papers.
    RePEc:arx:papers:2407.18583.

    Full description at Econpapers || Download paper

  2. An Explicit Scheme for Pathwise XVA Computations. (2024). Cr, St'Ephane ; Abbas-Turki, Lokman ; Saadeddine, Bouazza ; Li, Botao.
    In: Papers.
    RePEc:arx:papers:2401.13314.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abbas‐Turki, L. A., Vialle, S., Lapeyre, B., & Mercier, P. (2014). Pricing derivatives on graphics processing units using Monte Carlo simulation. Concurrency and Computation: Practice and Experience, 26(9), 1679–1697.
    Paper not yet in RePEc: Add citation now
  2. Abbas‐Turki, L., Diallo, B., & Crépey, S. (2018). XVA principles, nested Monte Carlo strategies, and GPU optimizations. International Journal of Theoretical and Applied Finance, 21, 1850030.

  3. Albanese, C., Crépey, S., Hoskinson, R., & Saadeddine, B. (2021). XVA analysis from the balance sheet. Quantitative Finance, 21(1), 99–123.

  4. Bengio, Y., Courville, A., & Goodfellow, I. (2016). Deep learning. MIT Press.
    Paper not yet in RePEc: Add citation now
  5. Bergstra, J., & Bengio, Y. (2012). Random search for hyper‐parameter optimization. Journal of Machine Learning Research, 13, 281–305.
    Paper not yet in RePEc: Add citation now
  6. Bozinovski, S. (2020). Reminder of the first paper on transfer learning in neural networks, 1976. Informatica, 44(3), 291‐302.
    Paper not yet in RePEc: Add citation now
  7. Carmona, R., & Crépey, S. (2010). Particle methods for the estimation of credit portfolio loss distributions. International Journal of Theoretical and Applied Finance, 13(04), 577–602.

  8. Cesari, J., Aquilina, J., & Charpillon, N. (2010). Modelling, Pricing, and Hedging Counterparty Credit Exposure. Springer.
    Paper not yet in RePEc: Add citation now
  9. Chizat, L., & Bach, F. (2018). On the global convergence of gradient descent for over‐parameterized models using optimal transport. In Proceedings of the Advances in Neural Information Processing Systems, 31.
    Paper not yet in RePEc: Add citation now
  10. Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The loss surfaces of multilayer networks. In Artificial intelligence and statistics, (pp. 192–204). PMLR.
    Paper not yet in RePEc: Add citation now
  11. Crépey, S. (2022). Positive XVAs. Frontiers of Mathematical Finance, 1(3), 425–465.
    Paper not yet in RePEc: Add citation now
  12. Crépey, S., & Song, S. (2015). BSDEs of counterparty risk. Stochastic Processes and their Applications, 125(8), 3023–3052.

  13. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.
    Paper not yet in RePEc: Add citation now
  14. Du, S., Lee, J., Li, H., Wang, L., & Zhai, X. (2019). Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning, (pp. 1675–1685). Proceedings of Machine Learning Research.
    Paper not yet in RePEc: Add citation now
  15. Ee, W., Han, J., & Jentzen, A. (2017). Deep learning‐based numerical methods for high‐dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4), 370–398.
    Paper not yet in RePEc: Add citation now
  16. Glasserman, P. (2004). Monte Carlo methods in financial engineering. Applications of mathematics, stochastic modelling and applied probability. Springer.
    Paper not yet in RePEc: Add citation now
  17. Gnoatto, A., Reisinger, C., & Picarelli, A. (2020). Deep xVA solver—a neural network based counterparty credit risk management framework. Available at SSRN 3594076.

  18. Gordy, M. B., & Juneja, S. (2010). Nested simulation in portfolio risk measurement. Management Science, 56(10), 1833–1848.

  19. Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251–257.
    Paper not yet in RePEc: Add citation now
  20. Huge, B., & Savine, A. (2020, September). Differential machine learning: The shape of things to come. Risk Magazine.

  21. Huré, C., Pham, H., & Warin, C. (2020). Deep backward schemes for high‐dimensional nonlinear PDEs. Mathematics of Computation, 89(324), 1547–1579.
    Paper not yet in RePEc: Add citation now
  22. Kidger, P., & Lyons, T. (2020). Universal approximation with deep narrow networks. In Conference on Learning Theory, (pp. 2306–2327). Proceedings of Machine Learning Research.
    Paper not yet in RePEc: Add citation now
  23. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980.
    Paper not yet in RePEc: Add citation now
  24. Lei, Y., Hu, T., Li, G., & Tang, K. (2019). Stochastic gradient descent for nonconvex learning without bounded gradient assumptions. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 4394–4400.
    Paper not yet in RePEc: Add citation now
  25. Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least‐squares approach. The Review of Financial Studies, 14(1), 113–147.

  26. Murphy, K. (2012). Machine learning: A probabilistic perspective. The MIT Press.
    Paper not yet in RePEc: Add citation now
  27. NVIDIA Corporation (2020). Programming guide: Cuda toolkit documentation. https://docs.nvidia.com/cuda/cuda‐c‐programming‐guide/index.html.
    Paper not yet in RePEc: Add citation now
  28. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
    Paper not yet in RePEc: Add citation now
  29. Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Adaptive computation and machine learning. MIT Press.
    Paper not yet in RePEc: Add citation now
  30. Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild!: A lock‐free approach to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems, 24.
    Paper not yet in RePEc: Add citation now
  31. Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value‐at‐risk. Journal of Risk, 2, 21–42.
    Paper not yet in RePEc: Add citation now
  32. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2014). Lectures on stochastic programming: Modeling and theory. SIAM.
    Paper not yet in RePEc: Add citation now
  33. Shorten, C., & Khoshgoftaar, T. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60.
    Paper not yet in RePEc: Add citation now
  34. Tsitsiklis, J. N., & Van Roy, B. (2001). Regression methods for pricing complex American‐style options. IEEE Transactions on Neural Networks, 12(4), 694–703.
    Paper not yet in RePEc: Add citation now
  35. Vershynin, R. (2018). High‐dimensional probability: An introduction with applications in data science, (Vol. 47). Cambridge University Press.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis. (2025). Andersson, Kristoffer ; Gnoatto, Alessandro.
    In: Papers.
    RePEc:arx:papers:2502.14766.

    Full description at Econpapers || Download paper

  2. Handling model risk with XVAs. (2024). Crpey, Stphane ; Bnzet, Cyril.
    In: Post-Print.
    RePEc:hal:journl:hal-03675291.

    Full description at Econpapers || Download paper

  3. CVA Sensitivities, Hedging and Risk. (2024). Cr, St'Ephane ; Nguyen, Hoang ; Saadeddine, Bouazza ; Li, Botao.
    In: Papers.
    RePEc:arx:papers:2407.18583.

    Full description at Econpapers || Download paper

  4. On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment. (2024). Villarino, Joel P ; 'Alvaro Leitao, .
    In: Papers.
    RePEc:arx:papers:2407.16435.

    Full description at Econpapers || Download paper

  5. An Explicit Scheme for Pathwise XVA Computations. (2024). Cr, St'Ephane ; Abbas-Turki, Lokman ; Saadeddine, Bouazza ; Li, Botao.
    In: Papers.
    RePEc:arx:papers:2401.13314.

    Full description at Econpapers || Download paper

  6. Provisions and Economic Capital for Credit Losses. (2024). Cr, St'Ephane ; Bastide, Dorinel.
    In: Papers.
    RePEc:arx:papers:2401.07728.

    Full description at Econpapers || Download paper

  7. Pathwise CVA Regressions With Oversimulated Defaults. (2023). Crepey, Stephane ; Abbas-Turki, Lokman A ; Saadeddine, Bouazza.
    In: Post-Print.
    RePEc:hal:journl:hal-03910149.

    Full description at Econpapers || Download paper

  8. XVA in a multi-currency setting with stochastic foreign exchange rates. (2023). Simonella, Roberta ; Vazquez, Carlos.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:207:y:2023:i:c:p:59-79.

    Full description at Econpapers || Download paper

  9. Pathwise CVA regressions with oversimulated defaults. (2023). Crepey, Stephane ; Abbasturki, Lokman A ; Saadeddine, Bouazza.
    In: Mathematical Finance.
    RePEc:bla:mathfi:v:33:y:2023:i:2:p:274-307.

    Full description at Econpapers || Download paper

  10. Stability of backward stochastic differential equations: the general case. (2023). Possamai, Dylan ; Papapantoleon, Antonis ; Saplaouras, Alexandros.
    In: Papers.
    RePEc:arx:papers:2107.11048.

    Full description at Econpapers || Download paper

  11. Sparse grid method for highly efficient computation of exposures for xVA. (2022). Grzelak, Lech A.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322005203.

    Full description at Econpapers || Download paper

  12. Pathwise CVA Regressions With Oversimulated Defaults. (2022). Cr, St'Ephane ; Abbas-Turki, Lokman ; Saadeddine, Bouazza.
    In: Papers.
    RePEc:arx:papers:2211.17005.

    Full description at Econpapers || Download paper

  13. Sparse Grid Method for Highly Efficient Computation of Exposures for xVA. (2022). Grzelak, Lech.
    In: Papers.
    RePEc:arx:papers:2104.14319.

    Full description at Econpapers || Download paper

  14. Deep xVA solver -- A neural network based counterparty credit risk management framework. (2022). Gnoatto, Alessandro ; Reisinger, Christoph ; Picarelli, Athena.
    In: Papers.
    RePEc:arx:papers:2005.02633.

    Full description at Econpapers || Download paper

  15. XVA Analysis From the Balance Sheet. (2021). Albanese, Claudio ; Crepey, Stephane ; Hoskinson, Rodney ; Saadeddine, Bouazza.
    In: Post-Print.
    RePEc:hal:journl:hal-03910125.

    Full description at Econpapers || Download paper

  16. Deep xVA solver - A neural network based counterparty credit risk management framework. (2020). Gnoatto, Alessandro ; Reisinger, Christoph ; Picarelli, Athena.
    In: Working Papers.
    RePEc:ver:wpaper:07/2020.

    Full description at Econpapers || Download paper

  17. Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations. (2020). Crepey, Stephane ; Dixon, Matthew F.
    In: Post-Print.
    RePEc:hal:journl:hal-03910109.

    Full description at Econpapers || Download paper

  18. Wealth Transfers, Indifference Pricing, and XVA Compression Schemes. (2020). Albanese, Claudio ; Crepey, Stephane ; Chataigner, Marc.
    In: Post-Print.
    RePEc:hal:journl:hal-03910047.

    Full description at Econpapers || Download paper

  19. XVA Analysis From the Balance Sheet. (2020). Albanese, Claudio ; Crepey, Stephane ; Hoskinson, Rodney ; Saadeddine, Bouazza.
    In: Papers.
    RePEc:arx:papers:2009.00368.

    Full description at Econpapers || Download paper

  20. Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations. (2019). Cr, St'Ephane ; Dixon, Matthew.
    In: Papers.
    RePEc:arx:papers:1901.11081.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 07:15:51 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.