- Alstom Group. (2020a). Towards clean and future‐oriented mobility. Coradia ILint—the World's 1st Hydrogen Powered Train. https://www.alstom.com/our-solutions/rolling-stock/coradia-ilint-worlds-1st-hydrogen-powered-train.
Paper not yet in RePEc: Add citation now
- Alstom Group. (2020b, March 6). Alstom's hydrogen train Coradia iLint completes successful tests in the Netherlands. Alstom. https://www.alstom.com/press-releases-news/2020/3/alstoms-hydrogen-train-coradia-ilint-completes-successful-tests.
Paper not yet in RePEc: Add citation now
- Arabzadeh, V., Mikkola, J., Jasiūnas, J., & Lund, P. D. (2020). Deep decarbonization of urban energy systems through renewable energy and sector‐coupling flexibility strategies. Journal of Environmental Management, 260, 110090. https://doi.org/10.1016/j.jenvman.2020.110090.
Paper not yet in RePEc: Add citation now
- Ausfelder, F., & Dura, H. E. (2018). Optionen für ein nachhaltiges Energiesystem mit Power‐to‐X Technologien.
Paper not yet in RePEc: Add citation now
- Ausfelder, F., Drake, F.‐D., Erlach, B., Fischedick, M., Henning, H. M., Kost, C. P., Münch, W., Pittel, K., Rehtanz, C., Sauer, J., Schätzler, K., Stephanos, C., Themann, M., Umbach, E., Wagemann, K., Wagner, H.‐J., & Wagner, U. (2017). ‘Sektorkopplung’—Untersuchungen und Überlegungen zur Entwicklung eines integrierten Energiesystems.
Paper not yet in RePEc: Add citation now
Bellocchi, S., Manno, M., Noussan, M., Prina, M. G., & Vellini, M. (2020). Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system. Energy, 196, 117062. https://doi.org/10.1016/j.energy.2020.117062.
- Bernath, C., Deac, G., & Sensfuß, F. (2019). Influence of heat pumps on renewable electricity integration: Germany in a European context. Energy Strategy Reviews, 26, 100389. https://doi.org/10.1016/j.esr.2019.100389.
Paper not yet in RePEc: Add citation now
Bloess, A. (2019). Impacts of heat sector transformation on Germany's power system through increased use of power‐to‐heat. Applied Energy, 239, 560–580. https://doi.org/10.1016/j.apenergy.2019.01.101.
Bloess, A., Schill, W.‐P., & Zerrahn, A. (2018). Power‐to‐heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Applied Energy, 212, 1611–1626. https://doi.org/10.1016/j.apenergy.2017.12.073.
Brown, T., Schlachtberger, D., Kies, A., Schramm, S., & Greiner, M. (2018). Synergies of sector coupling and transmission reinforcement in a cost‐optimised, highly renewable European energy system. Energy, 160, 720–739. https://doi.org/10.1016/j.energy.2018.06.222.
Buffa, S., Cozzini, M., D'Antoni, M., Baratieri, M., & Fedrizzi, R. (2019). 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews, 104, 504–522. https://doi.org/10.1016/j.rser.2018.12.059.
- Bundesministerium für Wirtschaft und Energie (BMWi). (2016). Green paper on energy efficiency: Discussion paper of the Federal Ministry for Economic Affairs and Energy.
Paper not yet in RePEc: Add citation now
- Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB). (2016a). Climate Action Plan 2050—Principles and goals of the German government's climate policy.
Paper not yet in RePEc: Add citation now
- Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB). (2016b). Klimaschutzplan 2050—Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung.
Paper not yet in RePEc: Add citation now
Burandt, T., Xiong, B., Löffler, K., & Oei, P.‐Y. (2019). Decarbonizing China's energy system—Modeling the transformation of the electricity, transportation, heat, and industrial sectors. Applied Energy, 255, 113820. https://doi.org/10.1016/j.apenergy.2019.113820.
- Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power‐to‐gas and power‐to‐liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454. https://doi.org/10.1016/j.rser.2017.09.003.
Paper not yet in RePEc: Add citation now
Cambini, C., Congiu, R., Jamasb, T., Llorca, M., & Soroush, G. (2020). Energy systems integration: Implications for public policy. Energy Policy, 143, 111609. https://doi.org/10.1016/j.enpol.2020.111609.
Connolly, D., Lund, H., & Mathiesen, B. V. (2016). Smart energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renewable and Sustainable Energy Reviews, 60, 1634–1653. https://doi.org/10.1016/j.rser.2016.02.025.
- Danish Energy Agency (DEA). (2016). Technology data for electricity, district heating, energy storage and energy conversion. https://ens.dk/sites/ens.dk/files/Statistik/technology_data_catalogue_for_el_and_dh_-_0009.pdf.
Paper not yet in RePEc: Add citation now
- Danish Energy Agency (DEA). (2017). Regulation and planning of district heating in Denmark.
Paper not yet in RePEc: Add citation now
- Deutsche Energie‐Agentur (Dena). (2017). dena‐Leitstudie: Integrierte Energiewende.
Paper not yet in RePEc: Add citation now
- DVGW, & VDE. (2016). Eckpunkte zur Begriffsdefinition Sektorenkopplung.
Paper not yet in RePEc: Add citation now
- Emonts, B., Reuß, M., Stenzel, P., Welder, L., Knicker, F., Grube, T., Görner, K., Robinius, M., & Stolten, D. (2019). Flexible sector coupling with hydrogen: A climate‐friendly fuel supply for road transport. International Journal of Hydrogen Energy, 44(26), 12918–12930. https://doi.org/10.1016/j.ijhydene.2019.03.183.
Paper not yet in RePEc: Add citation now
- European Commission (EC). (2014). A policy framework for climate and energy in the period from 2020 to 2030. https://www.eea.europa.eu/policy-documents/com-2014-15-final.
Paper not yet in RePEc: Add citation now
- European Parliament (EP). (2018). Sector coupling: How can it be enhanced in the EU to foster grid stability and decarbonise?.
Paper not yet in RePEc: Add citation now
- Felten, B. (2020). An integrated model of coupled heat and power sectors for large‐scale energy system analyses. Applied Energy, 266, 114521. https://doi.org/10.1016/j.apenergy.2020.114521.
Paper not yet in RePEc: Add citation now
- Foresight Climate & Energy. (2019, May 3). Hydrogen: The Northern Netherlands is ready. https://foresightdk.com/hydrogen-northern-netherlands-is-ready/.
Paper not yet in RePEc: Add citation now
- Frank, L., Jacob, K., & Quitzow, R. (2020). Transforming or tinkering at the margins? Assessing policy strategies for heating decarbonisation in Germany and the United Kingdom. Energy Research & Social Science, 67, 101513. https://doi.org/10.1016/j.erss.2020.101513.
Paper not yet in RePEc: Add citation now
- Geidl, M., Koeppel, G., Favre‐Perrod, P., Klöckl, B., Andersson, G., & Fröhlich, K. (2007). The energy hub: A powerful concept for future energy systems. 3rd Annual Carnegie Mellon Conference on the Electricity Industry: Ensuring that the Industry has the Physical and Human Resources Needed for the Next Thirty Years. https://www.research-collection.ethz.ch/handle/20.500.11850/3133.
Paper not yet in RePEc: Add citation now
- Herrmann, C., Schmidt, C., Kurle, D., Blume, S., & Thiede, S. (2014). Sustainability in manufacturing and factories of the future. International Journal of Precision Engineering and Manufacturing‐Green Technology, 1(4), 283–292. https://doi.org/10.1007/s40684-014-0034-z.
Paper not yet in RePEc: Add citation now
- Hidalgo, D., & Martín‐Marroquín, J. M. (2020). Power‐to‐methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews, 132, 110057. https://doi.org/10.1016/j.rser.2020.110057.
Paper not yet in RePEc: Add citation now
- Hörsch, J., & Brown, T. (2017). The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios. 2017 14th International Conference on the European Energy Market (EEM), 1–7. https://doi.org/10.1109/EEM.2017.7982024.
Paper not yet in RePEc: Add citation now
- International Energy Agency (IEA). (2019). The future of hydrogen (Report prepared by the IEA for the G20, Japan).
Paper not yet in RePEc: Add citation now
- International Renewable Energy Agency (IRENA). (2018). Hydrogen from renewable power: Technology outlook for the energy transition.
Paper not yet in RePEc: Add citation now
- IRENA, IEA, & REN21. (2018). Renewable energy policies in a time of transition.
Paper not yet in RePEc: Add citation now
- IRENA. (2015). Renewable energy options for shipping.
Paper not yet in RePEc: Add citation now
- Jambagi, A., Kramer, M., & Cheng, V. (2015). Electricity and heat sector coupling for domestic energy systems: Benefits of integrated energy system modelling. 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), 1–6.
Paper not yet in RePEc: Add citation now
Jimenez‐Navarro, J.‐P., Kavvadias, K., Filippidou, F., Pavičević, M., & Quoilin, S. (2020). Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system. Applied Energy, 270, 115134. https://doi.org/10.1016/j.apenergy.2020.115134.
Leitner, B., Widl, E., Gawlik, W., & Hofmann, R. (2019). A method for technical assessment of power‐to‐heat use cases to couple local district heating and electrical distribution grids. Energy, 182, 729–738. https://doi.org/10.1016/j.energy.2019.06.016.
Lester, M. S., Bramstoft, R., & Münster, M. (2020). Analysis on electrofuels in future energy systems: A 2050 case study. Energy, 199, 117408. https://doi.org/10.1016/j.energy.2020.117408.
- Lewandowska‐Bernat, A., & Desideri, U. (2018). Opportunities of power‐to‐gas technology in different energy systems architectures. Applied Energy, 228, 57–67. https://doi.org/10.1016/j.apenergy.2018.06.001.
Paper not yet in RePEc: Add citation now
Lund, H., Andersen, A. N., Østergaard, P. A., Mathiesen, B. V., & Connolly, D. (2012). From electricity smart grids to smart energy systems—A market operation based approach and understanding. Energy, 42(1), 96–102. https://doi.org/10.1016/j.energy.2012.04.003.
- Lund, H., Mathiesen, B. V., Connolly, D., & Ostergaard, P. A. (2014). Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions. Chemical Engineering Transactions, 39, 1–6. https://doi.org/10.3303/CET1439001.
Paper not yet in RePEc: Add citation now
Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. https://doi.org/10.1016/j.energy.2017.05.123.
Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th generation district heating (4GDH). Energy, 68, 1–11. https://doi.org/10.1016/j.energy.2014.02.089.
Ma, T., Wu, J., Hao, L., Lee, W.‐J., Yan, H., & Li, D. (2018). The optimal structure planning and energy management strategies of smart multi energy systems. Energy, 160, 122–141. https://doi.org/10.1016/j.energy.2018.06.198.
Mancarella, P. (2014). MES (multi‐energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17. https://doi.org/10.1016/j.energy.2013.10.041.
- Marnay, C., & Lai, J. (2012). Serving electricity and heat requirements efficiently and with appropriate energy quality via microgrids. The Electricity Journal, 25(8), 7–15. https://doi.org/10.1016/j.tej.2012.09.017.
Paper not yet in RePEc: Add citation now
- Mathiesen, B. V., & Lund, H. (2009). Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renewable Power Generation, 3(2), 190–204. https://doi.org/10.1049/iet-rpg:20080049.
Paper not yet in RePEc: Add citation now
Mathiesen, B. V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P. A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K., & Hvelplund, F. K. (2015). Smart energy systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, 139–154. https://doi.org/10.1016/j.apenergy.2015.01.075.
- Matthes, F. Chr. (2018). Energy transformation in Germany: Progress, shortfalls and prospects.
Paper not yet in RePEc: Add citation now
McKenna, R. C., Bchini, Q., Weinand, J. M., Michaelis, J., König, S., Köppel, W., & Fichtner, W. (2018). The future role of power‐to‐gas in the energy transition: Regional and local techno‐economic analyses in Baden‐Württemberg. Applied Energy, 212, 386–400. https://doi.org/10.1016/j.apenergy.2017.12.017.
Nielsen, M. G., Morales, J. M., Zugno, M., Pedersen, T. E., & Madsen, H. (2016). Economic valuation of heat pumps and electric boilers in the Danish energy system. Applied Energy, 167, 189–200. https://doi.org/10.1016/j.apenergy.2015.08.115.
Noussan, M. (2018). Performance based approach for electricity generation in smart grids. Applied Energy, 220, 231–241. https://doi.org/10.1016/j.apenergy.2018.03.092.
- Novak, P. (2017). Exergy as measure of sustainability of energy system. International Journal of Earth & Environmental Sciences, 2(2), 1–2. https://doi.org/10.15344/2456-351X/2017/139.
Paper not yet in RePEc: Add citation now
- Olczak, M., & Piebalgs, A. (2018). Sector coupling: The new EU climate and energy paradigm?.
Paper not yet in RePEc: Add citation now
- Ornetzeder, M., & Sinozic, T. (2020). Sector coupling of renewable energy in an experimental setting. TATuP—Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 29(2), 38–44. https://doi.org/10.14512/tatup.29.2.38.
Paper not yet in RePEc: Add citation now
Pavičević, M., Mangipinto, A., Nijs, W., Lombardi, F., Kavvadias, K., Jiménez Navarro, J. P., Colombo, E., & Quoilin, S. (2020). The potential of sector coupling in future European energy systems: Soft linking between the Dispa‐SET and JRC‐EU‐TIMES models. Applied Energy, 267, 115100. https://doi.org/10.1016/j.apenergy.2020.115100.
- Posdziech, O., Schwarze, K., & Brabandt, J. (2019). Efficient hydrogen production for industry and electricity storage via high‐temperature electrolysis. International Journal of Hydrogen Energy, 44(35), 19089–19101. https://doi.org/10.1016/j.ijhydene.2018.05.169.
Paper not yet in RePEc: Add citation now
- Quaschning, V. (2016). Sektorkopplung durch die Energiewende.
Paper not yet in RePEc: Add citation now
- Richts, C., Jansen, M., & Siefert, M. (2015). Determining the economic value of offshore wind power plants in the changing energy system. Energy Procedia, 80, 422–432. https://doi.org/10.1016/j.egypro.2015.11.446.
Paper not yet in RePEc: Add citation now
- Ridjan, I., Mathiesen, B. V., & Connolly, D. (2016). Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: A review. Elsevier Enhanced Reader. https://doi.org/10.1016/j.jclepro.2015.05.117.
Paper not yet in RePEc: Add citation now
Roach, M., & Meeus, L. (2020). The welfare and price effects of sector coupling with power‐to‐gas. Energy Economics, 86, 104708. https://doi.org/10.1016/j.eneco.2020.104708.
Robinius, M., Otto, A. D.‐I., Heuser, P., Welder, L., Syranidis, K., Ryberg, D. S., Grube, T. J., Markewitz, P., Peters, R., & Stolten, D. (2017). Linking the power and transport sectors—Part 1: The principle of sector coupling. https://doi.org/10.3390/EN10070956.
Robinius, M., Otto, A., Syranidis, K., Ryberg, D. S., Heuser, P., Welder, L., Grube, T., Markewitz, P., Tietze, V., & Stolten, D. (2017). Linking the power and transport sectors—Part 2: Modelling a sector coupling scenario for Germany. Energies, 10(7), 957ff. https://doi.org/10.3390/en10070957.
- Robinius, M., Raje, T., Nykamp, S., Rott, T., Müller, M., Grube, T., Katzenbach, B., Küppers, S., & Stolten, D. (2018). Power‐to‐gas: Electrolyzers as an alternative to network expansion—An example from a distribution system operator. Applied Energy, 210, 182–197. https://doi.org/10.1016/j.apenergy.2017.10.117.
Paper not yet in RePEc: Add citation now
- Schaber, K. (2013). Integration of variable renewable energies in the European power system: A model‐based analysis of transmission grid extensions and energy sector coupling. Technische Universität.
Paper not yet in RePEc: Add citation now
- Schaber, K., Steinke, F., & Hamacher, T. (2013). Managing temporary oversupply from renewables efficiently: Electricity storage versus energy sector coupling in Germany. 22.
Paper not yet in RePEc: Add citation now
- Schemme, S., Samsun, R. C., Peters, R., & Stolten, D. (2017). Power‐to‐fuel as a key to sustainable transport systems—An analysis of diesel fuels produced from CO 2 and renewable electricity. Fuel, 205, 198–221. https://doi.org/10.1016/j.fuel.2017.05.061.
Paper not yet in RePEc: Add citation now
- Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., & Stolten, D. (2015). Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy, 40(12), 4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123.
Paper not yet in RePEc: Add citation now
Schill, W.‐P., & Zerrahn, A. (2020). Flexible electricity use for heating in markets with renewable energy. Applied Energy, 266, 114571. https://doi.org/10.1016/j.apenergy.2020.114571.
- Scorza, S. A., Pfeiffer, J., Schmitt, A., & Weissbart, C. (2018). Kurz zum Klima: “Sektorkopplung”—Ansätze und Implikationen der Dekarbonisierung des Energiesystems. ifo Schnelldienst, 71(10), 49–53.
Paper not yet in RePEc: Add citation now
- Stadler, I., & Sterner, M. (2018). Urban energy storage and sector coupling. In Urban energy transition: Renewable strategies for cities and regions (2nd ed., pp. 225–244). Elsevier.
Paper not yet in RePEc: Add citation now
Sterchele, P., Kersten, K., Palzer, A., Hentschel, J., & Henning, H.‐M. (2020). Assessment of flexible electric vehicle charging in a sector coupling energy system model—Modelling approach and case study. Applied Energy, 258, 114101. https://doi.org/10.1016/j.apenergy.2019.114101.
- Thema, M., Bauer, F., & Sterner, M. (2019). Power‐to‐gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787. https://doi.org/10.1016/j.rser.2019.06.030.
Paper not yet in RePEc: Add citation now
- Voestalpine. (2020). Voestalpine climate protection strategy. https://www.voestalpine.com/group/en/group/environment/climate-protection-strategy/.
Paper not yet in RePEc: Add citation now
- Warner, J. T. (2015). The handbook of lithium‐ion battery pack design: Chemistry, components, types and terminology. Elsevier Science.
Paper not yet in RePEc: Add citation now
- Witkowski, K., Haering, P., Seidelt, S., & Pini, N. (2020). Role of thermal technologies for enhancing flexibility in multi‐energy systems through sector coupling: Technical suitability and expected developments. IET Energy Systems Integration, 2(2), 69–79. https://doi.org/10.1049/iet-esi.2019.0061.
Paper not yet in RePEc: Add citation now
- Zhong, X., Islam, M., Xiong, H., & Sun, Z. (2017). Design the capacity of onsite generation system with renewable sources for manufacturing plant. Procedia Computer Science, 114, 433–440. https://doi.org/10.1016/j.procs.2017.09.008.
Paper not yet in RePEc: Add citation now
Zhu, K., Victoria, M., Andresen, G. B., & Greiner, M. (2020). Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil‐free electricity, heating and cooling system in Europe. Applied Energy, 262, 114500. https://doi.org/10.1016/j.apenergy.2020.114500.