- Abdallah, A. S. H., Hiroshi, Y., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2014). Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. International Journal of Energy and Environmental Engineering, 5(2–3), 1–9. https://doi.org/10.1007/s40095-014-0092-6.
Paper not yet in RePEc: Add citation now
- Abdullah, A., Said, I. B., & Ossen, D. R. (2019). A sustainable bio‐inspired cooling unit for hot arid regions: Integrated evaporative cooling system in wind tower. Applied Thermal Engineering, 161(July), 114201. https://doi.org/10.1016/j.applthermaleng.2019.114201.
Paper not yet in RePEc: Add citation now
- Abed, F. M., Zaidan, M. H., Hasanuzzaman, M., Kumar, L., & Jasim, A. K. (2021). Modelling and experimental performance investigation of a transpired solar collector and underground heat exchanger assisted hybrid evaporative cooling system. Journal of Building Engineering, 44(April), 102620. https://doi.org/10.1016/j.jobe.2021.102620.
Paper not yet in RePEc: Add citation now
- Ahmed, E. M., Abaas, O., Ahmed, M., & Ismail, M. R. (2011). Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi Journal of Biological Sciences, 18(1), 45–51. https://doi.org/10.1016/j.sjbs.2010.09.005.
Paper not yet in RePEc: Add citation now
- al Assaad, D. K., Orabi, M. S., Ghaddar, N. K., Ghali, K. F., Salam, D. A., Ouahrani, D., Farran, M. T., & Habib, R. R. (2021). A sustainable localised air distribution system for enhancing thermal environment and indoor air quality of poultry house for semiarid region. Biosystems Engineering, 203, 70–92. https://doi.org/10.1016/j.biosystemseng.2021.01.002.
Paper not yet in RePEc: Add citation now
- Al‐Badri, A. R., & Al‐Waaly, A. A. Y. (2017). The influence of chilled water on the performance of direct evaporative cooling. Energy and Buildings, 155, 143–150. https://doi.org/10.1016/j.enbuild.2017.09.021.
Paper not yet in RePEc: Add citation now
- Al‐Sulaiman, F. (2002). Evaluation of the performance of local fibers in evaporative cooling. Energy Conversion and Management, 43(16), 2267–2273. https://doi.org/10.1016/S0196-8904(01)00121-2.
Paper not yet in RePEc: Add citation now
- Alam, M. F., Sazidy, A. S., Kabir, A., Mridha, G., Litu, N. A., & Rahman, M. A. (2017). An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials. AIP Conference Proceedings, 1851, 020075. https://doi.org/10.1063/1.4984704.
Paper not yet in RePEc: Add citation now
- Alamdari, P., Saedodin, S., & Rejvani, M. (2020). Do non‐metallic material and radiation shields affect the operation of direct evaporative cooling systems? International Journal of Refrigeration, 114, 98–105. https://doi.org/10.1016/j.ijrefrig.2020.02.038.
Paper not yet in RePEc: Add citation now
- Alodan, M. A., & Al‐Faraj, A. A. (2005). Design and evaluation of galvanized metal sheets as evaporative cooling pads. Agricultural Science, 18(1), 9–18.
Paper not yet in RePEc: Add citation now
- Amer, O., Boukhanouf, R., & Ibrahim, H. G. (2015). A review of evaporative cooling technologies. International Journal of Environmental Science and Development, 6(2), 111–117. https://doi.org/10.7763/ijesd.2015.v6.571.
Paper not yet in RePEc: Add citation now
- American Society of Agricultural and Biological Engineers. (2008). ASABE standard (ANSI/ASAE EP406.4). Heating, ventilating and cooling greenhouses. American Society of Agricultural and Biological Engineers.
Paper not yet in RePEc: Add citation now
- Aparicio‐Ruiz, P., Schiano‐Phan, R., & Salmerón‐Lissén, J. M. (2018). Climatic applicability of downdraught evaporative cooling in the United States of America. Building and Environment, 136(February), 162–176. https://doi.org/10.1016/j.buildenv.2018.03.039.
Paper not yet in RePEc: Add citation now
- ASHRAE (2019). Evaporative cooling. In ASHRAE handbook – HVAC applications.Atlanta, GA: ASHRAE.
Paper not yet in RePEc: Add citation now
- Baca, M. I., Tur, M. S., Gonzalez, N. J., & Román, A. C. (2011). Evaporative cooling efficiency according to climate conditions. Procedia Engineering, 21, 283–290. https://doi.org/10.1016/j.proeng.2011.11.2016.
Paper not yet in RePEc: Add citation now
- Barzegar, M., Layeghi, M., Ebrahimi, G., Hamzeh, Y., & Khorasani, M. (2012). Experimental evaluation of the performances of cellulosic pads made out of Kraft and NSSC corrugated papers as evaporative media. Energy Conversion and Management, 54(1), 24–29. https://doi.org/10.1016/j.enconman.2011.09.016.
Paper not yet in RePEc: Add citation now
- Beshkani, A., & Hosseini, R. (2006). Numerical modeling of rigid media evaporative cooler. Applied Thermal Engineering, 26(5–6), 636–643. https://doi.org/10.1016/j.applthermaleng.2005.06.006.
Paper not yet in RePEc: Add citation now
- Bishoyi, D., & Sudhakar, K. (2017). Experimental performance of a direct evaporative cooler in composite climate of India. Energy and Buildings, 153, 190–200. https://doi.org/10.1016/j.enbuild.2017.08.014.
Paper not yet in RePEc: Add citation now
- Brosnan, T., & Sun, D. (2001). Precooling techniques and applications for horticultural products – A review [Techniques de préréfrigération et applications pour les produits horticoles passées en revue]. International Journal of Refrigeration, 24, 154–170.
Paper not yet in RePEc: Add citation now
- Camargo, J. R., Ebinuma, C. D., & Silveira, J. L. (2005). Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city. International Journal of Refrigeration, 28(7), 1124–1132. https://doi.org/10.1016/j.ijrefrig.2004.12.011.
Paper not yet in RePEc: Add citation now
- Campaniço, H., Soares, P. M. M., Cardoso, R. M., & Hollmuller, P. (2019). Impact of climate change on building cooling potential of direct ventilation and evaporative cooling: A high resolution view for the Iberian Peninsula. Energy and Buildings, 192, 31–44. https://doi.org/10.1016/j.enbuild.2019.03.017.
Paper not yet in RePEc: Add citation now
- Chen, W., Liu, S., & Lin, J. (2015). Analysis on the passive evaporative cooling wall constructed of porous ceramic pipes with water sucking ability. Energy and Buildings, 86, 541–549. https://doi.org/10.1016/j.enbuild.2014.10.055.
Paper not yet in RePEc: Add citation now
- Chen, X., Su, Y., Aydin, D., Ding, Y., Zhang, S., Reay, D., & Riffat, S. (2018). A novel evaporative cooling system with a polymer hollow fibre spindle. Applied Thermal Engineering, 132, 665–675. https://doi.org/10.1016/j.applthermaleng.2018.01.005.
Paper not yet in RePEc: Add citation now
- Chen, X., Su, Y., Aydin, D., Zhang, X., Ding, Y., Reay, D., Law, R., & Riffat, S. (2017). Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape. Energy and Buildings, 154, 166–174. https://doi.org/10.1016/j.enbuild.2017.08.068.
Paper not yet in RePEc: Add citation now
- Chiesa, G., Huberman, N., & Pearlmutter, D. (2019). Geo‐climatic potential of direct evaporative cooling in the Mediterranean region: A comparison of key performance indicators. Building and Environment, 151(November), 318–337. https://doi.org/10.1016/j.buildenv.2019.01.059.
Paper not yet in RePEc: Add citation now
- Cooperman, A., Dieckmann, J., & Brodrick, J. (2012). Power plant water use. ASHRAE Journal, 54(1), 65–68.
Paper not yet in RePEc: Add citation now
- Cooperman, B. A., Dieckmann, J., & Brodrick, J. (2011). Water/electricity trade‐offs. ASHRAE Journal, 118–120.
Paper not yet in RePEc: Add citation now
- Crow, L. W. (1972). Weather data related to evaporative cooling. ASHRAE Journal, 14(6), 60–68.
Paper not yet in RePEc: Add citation now
- Cuce, P. M., & Riffat, S. (2016). A state of the art review of evaporative cooling systems for building applications. Renewable and Sustainable Energy Reviews, 54, 1240–1249. https://doi.org/10.1016/j.rser.2015.10.066.
Paper not yet in RePEc: Add citation now
- Czarick, M., & Fairchild, B. (2012). Plastic less effective than paper evaporative cooling pads! World Poultry, 28(10), 26–29.
Paper not yet in RePEc: Add citation now
- Dai, Y. J., & Sumathy, K. (2002). Theoretical study on a cross‐flow direct evaporative cooler using honeycomb paper as packing material. Applied Thermal Engineering, 22(13), 1417–1430. https://doi.org/10.1016/S1359-4311(02)00069-8.
Paper not yet in RePEc: Add citation now
- De Melo, J. C. F., Bamberg, J. V. M., MacHado, N. S., Caldas, E. N. G., & Rodrigues, M. S. (2019). Evaporative cooling efficiency of pads consisting of vegetable loofah. Comunicata Scientiae, 10(1), 38–44. https://doi.org/10.14295/cs.v10i1.2930.
Paper not yet in RePEc: Add citation now
Del Rio, M. A., Asawa, T., & Hirayama, Y. (2020). Modeling and validation of the cool summer microclimate formed by passive cooling elements in a semi‐outdoor building space. Sustainability (Switzerland), 12(13), 5360. https://doi.org/10.3390/su12135360.
- Dhamneya, A. K., Rajput, S. P. S., & Singh, A. (2018). Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving. Journal of Building Engineering, 17(November), 52–64. https://doi.org/10.1016/j.jobe.2018.01.012.
Paper not yet in RePEc: Add citation now
- Doğramacı, P. A., & Aydın, D. (2020). Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot‐dry climate. Journal of Building Engineering, 30(December), 101240. https://doi.org/10.1016/j.jobe.2020.101240.
Paper not yet in RePEc: Add citation now
Doğramacı, P. A., Riffat, S., Gan, G., & Aydın, D. (2019). Experimental study of the potential of eucalyptus fibres for evaporative cooling. Renewable Energy, 131, 250–260. https://doi.org/10.1016/j.renene.2018.07.005.
- Duan, Z., Zhan, C., Zhang, X., Mustafa, M., Zhao, X., Alimohammadisagvand, B., & Hasan, A. (2012). Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, 16, 6823–6850. https://doi.org/10.1016/j.rser.2012.07.007.
Paper not yet in RePEc: Add citation now
- El‐Refaie, M. F., & Kaseb, S. (2009). Speculation in the feasibility of evaporative cooling. Building and Environment, 44(4), 826–838. https://doi.org/10.1016/j.buildenv.2008.05.020.
Paper not yet in RePEc: Add citation now
Emdadi, Z., Asim, N., Yarmo, M. A., Shamsudin, R., Mohammad, M., & Sopian, K. (2016). Green material prospects for passive evaporative cooling systems: Geopolymers. Energies, 9(8), 586. https://doi.org/10.3390/en9080586.
- Emdadi, Z., Maleki, A., Azizi, M., & Asim, N. (2019). Evaporative passive cooling designs for buildings. Strategic Planning for Energy and the Environment, 38(4), 63–80. https://doi.org/10.1080/10485236.2019.12054412.
Paper not yet in RePEc: Add citation now
- Fidaros, D., Baxevanou, C., Bartzanas, T., & Kittas, C. (2018). Numerical study of mechanically ventilated broiler house equipped with evaporative pads. Computers and Electronics in Agriculture, 149(September), 101–109. https://doi.org/10.1016/j.compag.2017.10.016.
Paper not yet in RePEc: Add citation now
- Fouda, A., & Melikyan, Z. (2011). A simplified model for analysis of heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 31(5), 932–936. https://doi.org/10.1016/j.applthermaleng.2010.11.016.
Paper not yet in RePEc: Add citation now
- Franco‐Salas, A., Peña‐Fernández, A., & Valera‐Martínez, D. L. (2019). Refrigeration capacity and effect of ageing on the operation of cellulose evaporative cooling pads, by wind tunnel analysis. International Journal of Environmental Research and Public Health, 16(23), 4690. https://doi.org/10.3390/ijerph16234690.
Paper not yet in RePEc: Add citation now
Franco, A., Valera, D. L., & Peña, A. (2014). Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 7(3), 1427–1447. https://doi.org/10.3390/en7031427.
- Franco, A., Valera, D. L., Madueño, A., & Peña, A. (2010). Influence of water and air flow on the performance of cellulose evaporative cooling pads used in Mediterranean greenhouses. Transactions of the ASABE, 53(March), 565–576.
Paper not yet in RePEc: Add citation now
- Franco, A., Valera, D. L., Peña, A., & Pérez, A. M. (2011). Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses. Computers and Electronics in Agriculture, 76(2), 218–230. https://doi.org/10.1016/j.compag.2011.01.019.
Paper not yet in RePEc: Add citation now
- Ghani, S., Bakochristou, F., ElBialy, E. M. A. A., Gamaledin, S. M. A., Rashwan, M. M., Abdelhalim, A. M., & Ismail, S. M. (2019). Design challenges of agricultural greenhouses in hot and arid environments – A review. Engineering in Agriculture, Environment and Food, 12, 48–70. https://doi.org/10.1016/j.eaef.2018.09.004.
Paper not yet in RePEc: Add citation now
- Ghoulem, M., El Moueddeb, K., Nehdi, E., Zhong, F., & Calautit, J. (2020). Design of a passive downdraught evaporative cooling windcatcher (PDEC‐WC) system for greenhouses in hot climates. Energies, 13(11). https://doi.org/10.3390/en13112934.
Paper not yet in RePEc: Add citation now
- Guan, L., Bennett, M., & Bell, J. (2015). Evaluating the potential use of direct evaporative cooling in Australia. Energy and Buildings, 108, 185–194. https://doi.org/10.1016/j.enbuild.2015.09.020.
Paper not yet in RePEc: Add citation now
- Gunhan, T., Demir, V., & Yagcioglu, A. K. (2007). Evaluation of the suitability of some local materials as cooling pads. Biosystems Engineering, 96(3), 369–377. https://doi.org/10.1016/j.biosystemseng.2006.12.001.
Paper not yet in RePEc: Add citation now
Harby, K., & Al‐amri, F. (2019). An investigation on energy savings of a split air‐conditioning using different commercial cooling pad thicknesses and climatic conditions. Energy, 182, 321–336. https://doi.org/10.1016/j.energy.2019.06.031.
- Hasani Balyani, H., Sohani, A., Sayyaadi, H., & Karami, R. (2015). Acquiring the best cooling strategy based on thermal comfort and 3E analyses for small scale residential buildings at diverse climatic conditions. International Journal of Refrigeration, 57, 112–137. https://doi.org/10.1016/j.ijrefrig.2015.04.008.
Paper not yet in RePEc: Add citation now
- He, J. (2011). A design supporting simulation system for predicting and evaluating the cool microclimate creating effect of passive evaporative cooling walls. Building and Environment, 46(3), 584–596. https://doi.org/10.1016/j.buildenv.2010.09.005.
Paper not yet in RePEc: Add citation now
- He, J., & Hoyano, A. (2010). Experimental study of cooling effects of a passive evaporative cooling wall constructed of porous ceramics with high water soaking‐up ability. Building and Environment, 45(2), 461–472. https://doi.org/10.1016/j.buildenv.2009.07.002.
Paper not yet in RePEc: Add citation now
- He, J., & Hoyano, A. (2011). Experimental study of practical applications of a passive evaporative cooling wall with high water soaking‐up ability. Building and Environment, 46(1), 98–108. https://doi.org/10.1016/j.buildenv.2010.07.004.
Paper not yet in RePEc: Add citation now
- He, S., Guan, Z., Gurgenci, H., Hooman, K., & Alkhedhair, A. M. (2014). Experimental study of heat transfer coefficient and pressure drop of cellulose corrugated media. In Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014 (pp. 3–6).
Paper not yet in RePEc: Add citation now
- He, S., Guan, Z., Gurgenci, H., Hooman, K., Lu, Y., & Alkhedhair, A. M. (2014). Experimental study of film media used for evaporative pre‐cooling of air. Energy Conversion and Management, 87, 874–884. https://doi.org/10.1016/j.enconman.2014.07.084.
Paper not yet in RePEc: Add citation now
- He, S., Guan, Z., Gurgenci, H., Jahn, I., Lu, Y., & Alkhedhair, A. M. (2014). Influence of ambient conditions and water flow on the performance of pre‐cooled natural draft dry cooling towers. Applied Thermal Engineering, 66(1–2), 621–631. https://doi.org/10.1016/j.applthermaleng.2014.02.070.
Paper not yet in RePEc: Add citation now
- He, S., Gurgenci, H., Guan, Z., Huang, X., & Lucas, M. (2015). A review of wetted media with potential application in the pre‐cooling of natural draft dry cooling towers. Renewable and Sustainable Energy Reviews, 44, 407–422. https://doi.org/10.1016/j.rser.2014.12.037.
Paper not yet in RePEc: Add citation now
- He, W., Xilian, L., Yuhui, S., Min, Z., & Zhaolin, G. (2018). Research of evaporative cooling experiment in summer of residential buildings in Xi'an. Energy Procedia, 152, 928–934. https://doi.org/10.1016/j.egypro.2018.09.095.
Paper not yet in RePEc: Add citation now
- Hweij, W. A., Al Touma, A., Ghali, K., & Ghaddar, N. (2017). Evaporatively‐cooled window driven by solar chimney to improve energy efficiency and thermal comfort in dry desert climate. Energy and Buildings, 139(2017), 755–761. https://doi.org/10.1016/j.enbuild.2017.01.071.
Paper not yet in RePEc: Add citation now
- Ibrahim, E., Shao, L., & Riffat, S. B. (2003). Performance of porous ceramic evaporators for building cooling application. Energy and Buildings, 35(9), 941–949. https://doi.org/10.1016/S0378-7788(03)00019-7.
Paper not yet in RePEc: Add citation now
- Jain, J. K., & Hindoliya, D. A. (2011). Experimental performance of new evaporative cooling pad materials. Sustainable Cities and Society, 1(4), 252–256. https://doi.org/10.1016/j.scs.2011.07.005.
Paper not yet in RePEc: Add citation now
- Jain, J. K., & Hindoliya, D. A. (2014). Correlations for saturation efficiency of evaporative cooling pads. Journal of the Institution of Engineers (India): Series C, 95(1), 5–10. https://doi.org/10.1007/s40032-014-0098-0.
Paper not yet in RePEc: Add citation now
- Kabeel, A. E., & Bassuoni, M. M. (2017). A simplified experimentally tested theoretical model to reduce water consumption of a direct evaporative cooler for dry climates. International Journal of Refrigeration, 82, 487–494. https://doi.org/10.1016/j.ijrefrig.2017.06.010.
Paper not yet in RePEc: Add citation now
- Ketwong, W., Deethayat, T., & Kiatsiriroat, T. (2021). Performance enhancement of air conditioner in hot climate by condenser cooling with cool air generated by direct evaporative cooling. Case Studies in Thermal Engineering, 26(January), 101127. https://doi.org/10.1016/j.csite.2021.101127.
Paper not yet in RePEc: Add citation now
- Khalvati, F., & Omidvar, A. (2019). Summer study on thermal performance of an exhausting airflow window in evaporatively‐cooled buildings. Applied Thermal Engineering, 153(January), 147–158. https://doi.org/10.1016/j.applthermaleng.2019.02.135.
Paper not yet in RePEc: Add citation now
- Khosravi, N., Aydin, D., Karim Nejhad, M., & Dogramaci, P. A. (2020). Comparative performance analysis of direct and desiccant assisted evaporative cooling systems using novel candidate materials. Energy Conversion and Management, 221(April), 113167. https://doi.org/10.1016/j.enconman.2020.113167.
Paper not yet in RePEc: Add citation now
- Kojok, F., Fardoun, F., Younes, R., & Outbib, R. (2016). Hybrid cooling systems: A review and an optimized selection scheme. Renewable and Sustainable Energy Reviews, 65, 57–80. https://doi.org/10.1016/j.rser.2016.06.092.
Paper not yet in RePEc: Add citation now
- Korese, J. K., & Hensel, O. (2016). Experimental evaluation of bulk charcoal pad configuration on evaporative cooling effectiveness. Agricultural Engineering International: CIGR Journal, 18(4), 11–21.
Paper not yet in RePEc: Add citation now
- Kovačević, I., & Sourbron, M. (2017). The numerical model for direct evaporative cooler. Applied Thermal Engineering, 113, 8–19. https://doi.org/10.1016/j.applthermaleng.2016.11.025.
Paper not yet in RePEc: Add citation now
- Kowalski, P., & Kwiecień, D. (2020). Evaluation of simple evaporative cooling systems in an industrial building in Poland. Journal of Building Engineering, 32(January), 101555. https://doi.org/10.1016/j.jobe.2020.101555.
Paper not yet in RePEc: Add citation now
- Kubilay, A., Ferrari, A., Derome, D., & Carmeliet, J. (2021). Smart wetting of permeable pavements as an evaporative‐cooling measure for improving the urban climate during heat waves. Journal of Building Physics, 45(1), 36–66. https://doi.org/10.1177/1744259120968586.
Paper not yet in RePEc: Add citation now
- Kumar, S., Singh, J., Siyag, J., & Rambhatla, S. (2020). Potential alternative materials used in evaporative coolers for sustainable energy applications: A review. International Journal of Air‐Conditioning and Refrigeration, 28(4), 2030006. https://doi.org/10.1142/s2010132520300062.
Paper not yet in RePEc: Add citation now
- Laknizi, A., Ben Abdellah, A., & Mahdaoui, M. (2021). Application of Taguchi and ANOVA methods in the optimisation of a direct evaporative cooling pad. International Journal of Sustainable Engineering, 00(00), 1–11. https://doi.org/10.1080/19397038.2020.1866707.
Paper not yet in RePEc: Add citation now
- Laknizi, A., Ben Abdellah, A., Faqir, M., Essadiqi, E., & Dhimdi, S. (2019). Performance characterization of a direct evaporative cooling pad based on pottery material. International Journal of Sustainable Engineering, 00(00), 1–11. https://doi.org/10.1080/19397038.2019.1677800.
Paper not yet in RePEc: Add citation now
- Laknizi, A., Mahdaoui, M., Ben Abdellah, A., Anoune, K., Bakhouya, M., & Ezbakhe, H. (2019). Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco. Case Studies in Thermal Engineering, 13(October), 100362. https://doi.org/10.1016/j.csite.2018.11.013.
Paper not yet in RePEc: Add citation now
- Lal Basediya, A., Samuel, D. V. K., & Beera, V. (2013). Evaporative cooling system for storage of fruits and vegetables – A review. Journal of Food Science and Technology, 50(3), 429–442. https://doi.org/10.1007/s13197-011-0311-6.
Paper not yet in RePEc: Add citation now
- Li, Y., & He, J. (2021). Evaluating the improvement effect of low‐energy strategies on the summer indoor thermal environment and cooling energy consumption in a library building: A case study in a hot‐humid and less‐windy city of China. Building Simulation, 14(5), 1423–1437. https://doi.org/10.1007/s12273-020-0747-6.
Paper not yet in RePEc: Add citation now
- Liao, C. M., & Chiu, K. H. (2002). Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region. Building and Environment, 37(2), 177–187. https://doi.org/10.1016/S0360-1323(00)00098-6.
Paper not yet in RePEc: Add citation now
- Liao, C. M., Singh, S., & Wang, T. S. (1998). Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications. Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering, 33(7), 1391–1417. https://doi.org/10.1080/10934529809376795.
Paper not yet in RePEc: Add citation now
- Lomas, K. J., Fiala, D., Cook, M. J., & Cropper, P. C. (2004). Building bioclimatic charts for non‐domestic buildings and passive downdraught evaporative cooling. Building and Environment, 39(6), 661–676. https://doi.org/10.1016/j.buildenv.2003.12.011.
Paper not yet in RePEc: Add citation now
- López, A., Valera, D. L., Molina‐Aiz, F. D., & Peña, A. (2012). Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with pad‐fan and fog systems. Biosystems Engineering, 113(4), 334–350. https://doi.org/10.1016/j.biosystemseng.2012.09.006.
Paper not yet in RePEc: Add citation now
- Lotfizadeh, H., Razzaghi, H., & Layeghi, M. (2013). Experimental performance analysis of a solar evaporative cooler with three different types of pads. Journal of Renewable and Sustainable Energy, 5(6), 1–14. https://doi.org/10.1063/1.4831779.
Paper not yet in RePEc: Add citation now
- Malli, A., Seyf, H. R., Layeghi, M., Sharifian, S., & Behravesh, H. (2011). Investigating the performance of cellulosic evaporative cooling pads. Energy Conversion and Management, 52(7), 2598–2603. https://doi.org/10.1016/j.enconman.2010.12.015.
Paper not yet in RePEc: Add citation now
- Martínez, P., Ruiz, J., Cutillas, C. G., Martínez, P. J., Kaiser, A. S., & Lucas, M. (2016). Experimental study on energy performance of a split air‐conditioner by using variable thickness evaporative cooling pads coupled to the condenser. Applied Thermal Engineering, 105, 1041–1050. https://doi.org/10.1016/j.applthermaleng.2016.01.067.
Paper not yet in RePEc: Add citation now
- Martínez, P., Ruiz, J., Martínez, P. J., Kaiser, A. S., & Lucas, M. (2018). Experimental study of the energy and exergy performance of a plastic mesh evaporative pad used in air conditioning applications. Applied Thermal Engineering, 138(March), 675–685. https://doi.org/10.1016/j.applthermaleng.2018.04.065.
Paper not yet in RePEc: Add citation now
- Martínez, R. S., Palladino, R. A., Banchero, G., Fernández‐Martín, R., Nanni, M., Juliano, N., Iorio, J., & La Manna, A. (2021). Providing heat‐stress abatement to late‐lactation Holstein cows affects hormones, metabolite blood profiles, and hepatic gene expression but not productive responses. Applied Animal Science, 37(4), 490–503. https://doi.org/10.15232/aas.2020-02109.
Paper not yet in RePEc: Add citation now
- Misra, D., & Ghosh, S. (2018). Evaporative cooling technologies for greenhouses: A comprehensive review. Agricultural Engineering International: CIGR Journal, 20(1), 1–15.
Paper not yet in RePEc: Add citation now
- Mohamed, S., Al‐Khatri, H., Calautit, J., Omer, S., & Riffat, S. (2021). The impact of a passive wall combining natural ventilation and evaporative cooling on schools' thermal conditions in a hot climate. Journal of Building Engineering, 44(December), 102624. https://doi.org/10.1016/j.jobe.2021.102624.
Paper not yet in RePEc: Add citation now
- Mohammad, A. T., Mat, S. B., Sulaiman, M. Y., Sopian, K., & Al‐Abidi, A. A. (2013). Experimental performance of a direct evaporative cooler operating in Kuala Lumpur. International Journal of of Thermal & Environmental Engineering, 6(1), 15–20. https://doi.org/10.5383/ijtee.06.01.003.
Paper not yet in RePEc: Add citation now
- Moran, F., Fosas, D., Coley, D., Natarajan, S., Orr, J., & Ahmad, O. B. (2021). Improving thermal comfort in refugee shelters in desert environments. Energy for Sustainable Development, 61, 28–45. https://doi.org/10.1016/j.esd.2020.12.008.
Paper not yet in RePEc: Add citation now
Nada, S. A., Elattar, H. F., Mahoud, M. A., & Fouda, A. (2020). Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers. Energy, 211, 118678. https://doi.org/10.1016/j.energy.2020.118678.
- Nada, S. A., Fouda, A., Mahmoud, M. A., & Elattar, H. F. (2019). Experimental investigation of energy and exergy performance of a direct evaporative cooler using a new pad type. Energy and Buildings, 203, 109449. https://doi.org/10.1016/j.enbuild.2019.109449.
Paper not yet in RePEc: Add citation now
- Naderi, E., Sajadi, B., Naderi, E., & Bakhti, B. (2020). Simulation‐based performance analysis of residential direct evaporative coolers in four climate regions of Iran. Journal of Building Engineering, 32(May), 101514. https://doi.org/10.1016/j.jobe.2020.101514.
Paper not yet in RePEc: Add citation now
- Naveenprabhu, V., & Suresh, M. (2020). Performance enhancement studies on evaporative cooling using volumetric heat and mass transfer coefficients. Numerical Heat Transfer; Part A: Applications, 0(0), 1–20. https://doi.org/10.1080/10407782.2020.1793556.
Paper not yet in RePEc: Add citation now
- Navon, R., & Arkin, H. (1993). Economic comparison of an air‐conditioner and a desert cooler for residences in arid areas. Construction Management and Economics, 11(1), 62–70. https://doi.org/10.1080/01446199300000065.
Paper not yet in RePEc: Add citation now
- Ndukwu, M. C., & Manuwa, S. I. (2015). A techno‐economic assessment for viability of some waste as cooling pads in evaporative cooling system. International Journal of Agricultural and Biological Engineering, 8(2), 151–158. https://doi.org/10.3965/j.ijabe.20150802.952.
Paper not yet in RePEc: Add citation now
- Odesola, I., & Onyebuchi, O. (2009). A review of porous evaporative cooling for the preservation of fruits and vegetables. Pacific Journal of Science and Technology, 10(2), 935–941.
Paper not yet in RePEc: Add citation now
- Okafor, V. C. (2017). Review on evaporative cooling systems. Greener Journal of Science, Engineering and Technological Research, 7(1), 001–020. https://doi.org/10.15580/gjsetr.2017.1.031817038.
Paper not yet in RePEc: Add citation now
- Oropeza‐perez, I., & Østergaard, P. A. (2018). Active and passive cooling methods for dwellings: A review. Renewable and Sustainable Energy Reviews, 82(August), 531–544. https://doi.org/10.1016/j.rser.2017.09.059.
Paper not yet in RePEc: Add citation now
- Pacak, A., & Worek, W. (2021). Review of dew point evaporative cooling technology for air conditioning applications. Applied Sciences (Switzerland), 11(3), 1–16. https://doi.org/10.3390/app11030934.
Paper not yet in RePEc: Add citation now
- Pandelidis, D., Pacak, A., Cicho, A., Gizicki, W., Worek, W., & Cetin, S. (2020). Experimental study of plate materials for evaporative air coolers. International Communications in Heat and Mass Transfer, 120, 105049. https://doi.org/10.1016/j.icheatmasstransfer.2020.105049.
Paper not yet in RePEc: Add citation now
- Parison, S., Hendel, M., Grados, A., & Royon, L. (2020). Analysis of the heat budget of standard, cool and watered pavements under lab heat‐wave conditions. Energy and Buildings, 228, 110455. https://doi.org/10.1016/j.enbuild.2020.110455.
Paper not yet in RePEc: Add citation now
- Paschold, H., Li, W. W., Morales, H., & Walton, J. (2003). Laboratory study of the impact of evaporative coolers on indoor PM concentrations. Atmospheric Environment, 37(8), 1075–1086. https://doi.org/10.1016/S1352-2310(02)00969-X.
Paper not yet in RePEc: Add citation now
Pérez‐Urrestarazu, L., Fernández‐Cañero, R., Franco‐Salas, A., & Egea, G. (2015). Vertical greening systems and sustainable cities. Journal of Urban Technology, 22(4), 65–85. https://doi.org/10.1080/10630732.2015.1073900.
- Pérez‐Urrestarazu, L., Fernández‐Cañero, R., Franco, A., & Egea, G. (2016). Influence of an active living wall on indoor temperature and humidity conditions. Ecological Engineering, 90, 120–124. https://doi.org/10.1016/j.ecoleng.2016.01.050.
Paper not yet in RePEc: Add citation now
- Periannan, V. (2013). Humidification, filtration and sound attenuation benefits of rigid media direct evaporative cooling systems while providing energy savings. In 2013 ASHRAE Annual Conference DE‐13‐C049 (pp. 1–9).
Paper not yet in RePEc: Add citation now
- Pistochini, T., & Modera, M. (2011). Water‐use efficiency for alternative cooling technologies in arid climates. Energy and Buildings, 43(2–3), 631–638. https://doi.org/10.1016/j.enbuild.2010.11.004.
Paper not yet in RePEc: Add citation now
- Purswell, J. L., Linhoss, J. E., Edge, C. M., Davis, J. D., & Campbell, J. C. (2018). Water supply rates for recirculating evaporative cooling systems. Applied Engineering in Agriculture ASABE, 34(3), 581–590.
Paper not yet in RePEc: Add citation now
- Ramzan, M., Kamran, M. S., Saleem, M. W., Ali, H., & Zeinelabdeen, M. I. M. (2021). Energy efficiency improvement of the split air conditioner through condensate assisted evaporative cooling. Arabian Journal for Science and Engineering, 46(8), 7719–7727. https://doi.org/10.1007/s13369-021-05494-x.
Paper not yet in RePEc: Add citation now
- Rawangkul, R., Khedari, J., Hirunlabh, J., & Zeghmati, B. (2008). Performance analysis of a new sustainable evaporative cooling pad made from coconut coir. International Journal of Sustainable Engineering, 1(2), 117–131. https://doi.org/10.1080/19397030802326726.
Paper not yet in RePEc: Add citation now
- Raza, H. M. U., Sultan, M., Bahrami, M., & Khan, A. A. (2021). Experimental investigation of evaporative cooling systems for agricultural storage and livestock air‐conditioning in Pakistan. Building Simulation, 14(3), 617–631. https://doi.org/10.1007/s12273-020-0678-2.
Paper not yet in RePEc: Add citation now
Rey‐Martínez, F. J., SanJosé‐Alonso, J. F., Velasco‐Gómez, E., Tejero‐González, A., Esquivias, P. M., & Rey‐Hernández, J. M. (2020). Energy consumption reduction of a chiller plant by adding evaporative pads to decrease condensation temperature. Energies, 13(9). https://doi.org/10.3390/en13092218.
- Rey‐Martínez, F. J., Velasco‐Gómez, E., Tejero‐González, A., & Flores Murrieta, F. E. (2010). Comparative study between a ceramic evaporative cooler (CEC) and an air‐source heat pump applied to a dwelling in Spain. Energy and Buildings, 42(10), 1815–1822. https://doi.org/10.1016/j.enbuild.2010.05.018.
Paper not yet in RePEc: Add citation now
- Rong, L., Pedersen, P., Jensen, T. L., Morsing, S., & Zhang, G. (2017). Dynamic performance of an evaporative cooling pad investigated in a wind tunnel for application in hot and arid climate. Biosystems Engineering, 156, 173–182. https://doi.org/10.1016/j.biosystemseng.2017.02.003.
Paper not yet in RePEc: Add citation now
- Rosa, J. F. V., Tinôco, I. F. F., Fernandes, C. M., Zolnier, S., & Bueno, M. M. (2011). Análise da Eficiência de Resfriamento de Painéis Porosos Preenchidos com Argila Expandida em Comparação aos de Celulose Usando Túnel de Vento. Revista Engenharia Na Agricultura – REVENG, 19(6), 516–523. https://doi.org/10.13083/1414-3984.v19n06a03.
Paper not yet in RePEc: Add citation now
- Saif, J., Wright, A., Khattak, S., & Elfadli, K. (2021). Keeping cool in the desert: Using wind catchers for improved thermal comfort and indoor air quality at half the energy. Buildings, 11(3). https://doi.org/10.3390/buildings11030100.
Paper not yet in RePEc: Add citation now
- Samam, W., Bruno, F., & Liu, M. (2009). Technical background research on evaporative air conditioners and feasibility of rating their water consumption. Water Rating (p. 61). Retrieved from copyright@agriculture.gov.au.
Paper not yet in RePEc: Add citation now
- Sellami, K., Feddaoui, M., Labsi, N., Najim, M., & Benkahla, Y. K. (2019). Numerical simulations of heat and mass transfer process of a direct evaporative cooler from a porous layer. Journal of Heat Transfer, 141(7), 1–10. https://doi.org/10.1115/1.4043302.
Paper not yet in RePEc: Add citation now
- Shah, B., Dwivedi, S., & Singhal, A. (2019). Energy saving in split air conditioner using evaporative cooling pad at the ODU. International Journal of Innovative Technology and Exploring Engineering, 9(1), 1858–1862. https://doi.org/10.35940/ijitee.A4765.119119.
Paper not yet in RePEc: Add citation now
- Shah, N., Park, W. Y., & Ding, C. (2021). Trends in best‐in‐class energy‐efficient technologies for room air conditioners. Energy Reports, 7, 3162–3170. https://doi.org/10.1016/j.egyr.2021.05.016.
Paper not yet in RePEc: Add citation now
- Sharma, K. K., & Katarey, S. (2019). Cost benefit analysis of window air conditioning system with evaporative cooled condenser. International Journal of Innovative Technology and Exploring Engineering, 8(11), 3761–3764. https://doi.org/10.35940/ijitee.J9665.0981119.
Paper not yet in RePEc: Add citation now
- Shekhar, R., Chopra, M. K., & Purohit, R. (2016). Design of compact evaporative cooler to improve cooling efficiency and to evaluate performance of different cooling pad material. International Journal for Scientific Research & Development, 4(01), 21–27.
Paper not yet in RePEc: Add citation now
- Sheng, C., & Agwu Nnanna, A. G. (2012). Empirical correlation of cooling efficiency and transport phenomena of direct evaporative cooler. Applied Thermal Engineering, 40, 48–55. https://doi.org/10.1016/j.applthermaleng.2012.01.052.
Paper not yet in RePEc: Add citation now
- Sohani, A., Sayyaadi, H., & Mohammadhosseini, N. (2018). Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. Energy Conversion and Management, 158(January), 327–345. https://doi.org/10.1016/j.enconman.2017.12.042.
Paper not yet in RePEc: Add citation now
- Sohani, A., Zabihigivi, M., Moradi, M. H., Sayyaadi, H., & Hasani Balyani, H. (2017). A comprehensive performance investigation of cellulose evaporative cooling pad systems using predictive approaches. Applied Thermal Engineering, 110, 1589–1608. https://doi.org/10.1016/j.applthermaleng.2016.08.216.
Paper not yet in RePEc: Add citation now
- Soponpongpipat, N., & Kositchaimongkol, S. (2011). Recycled high‐density polyethylene and rice husk as a wetted pad in evaporative cooling system. American Journal of Applied Sciences, 8(2), 186–191. https://doi.org/10.3844/ajassp.2011.186.191.
Paper not yet in RePEc: Add citation now
- Soto, A., Martínez, P. J., Martínez, P., & Tudela, J. A. (2021). Simulation and experimental study of residential building with north side wind tower assisted by solar chimneys. Journal of Building Engineering, 43(April), 102562. https://doi.org/10.1016/j.jobe.2021.102562.
Paper not yet in RePEc: Add citation now
- Spentzou, E., Cook, M. J., & Emmitt, S. (2021). Low‐energy cooling and ventilation refurbishments for buildings in a Mediterranean climate. Architectural Engineering and Design Management, 1–22. https://doi.org/10.1080/17452007.2021.1926898.
Paper not yet in RePEc: Add citation now
- Sreeram, V., Gebrehiwot, B., Sathyanarayan, S., Sawant, D., Agonafer, D., Kannan, N., J. Hoverson Kaler, M. (2015). Factors that affect the performance characteristics of wet cooling pads for data center applications. In Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2015, April (pp. 195–202). https://doi.org/10.1109/SEMI-THERM.2015.7100160.
Paper not yet in RePEc: Add citation now
- Suranjan Salins, S., Kota Reddy, S., & Kumar, S. (2021). Experimental investigation on use of alternative innovative materials for sustainable cooling applications. International Journal of Sustainable Engineering, 14, 1207–1217. https://doi.org/10.1080/19397038.2021.1924894.
Paper not yet in RePEc: Add citation now
- Tejero‐González, A., & Franco‐Salas, A. (2021). Optimal operation of evaporative cooling pads: A review. Renewable and Sustainable Energy Reviews, 151, 111632.
Paper not yet in RePEc: Add citation now
- Tejero‐González, A., Andrés‐Chicote, M., García‐Ibáñez, P., Velasco‐Gómez, E., & Rey‐Martínez, F. J. (2016). Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and Sustainable Energy Reviews, 65, 727–742. https://doi.org/10.1016/j.rser.2016.06.077.
Paper not yet in RePEc: Add citation now
- Tewari, P., Mathur, S., & Mathur, J. (2019). Thermal performance prediction of office buildings using direct evaporative cooling systems in the composite climate of India. Building and Environment, 157(April), 64–78. https://doi.org/10.1016/j.buildenv.2019.04.044.
Paper not yet in RePEc: Add citation now
- Tewari, P., Mathur, S., Mathur, J., Kumar, S., & Loftness, V. (2019). Field study on indoor thermal comfort of office buildings using evaporative cooling in the composite climate of India. Energy and Buildings, 199, 145–163. https://doi.org/10.1016/j.enbuild.2019.06.049.
Paper not yet in RePEc: Add citation now
- Tewari, P., Mathur, S., Mathur, J., Loftness, V., & Abdul‐Aziz, A. (2019). Advancing building bioclimatic design charts for the use of evaporative cooling in the composite climate of India. Energy and Buildings, 184, 177–192. https://doi.org/10.1016/j.enbuild.2018.12.005.
Paper not yet in RePEc: Add citation now
Ulpiani, G. (2019). Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts. Applied Energy, 254(April), 113647. https://doi.org/10.1016/j.apenergy.2019.113647.
- Velasco‐Gómez, E., Tejero‐González, A., Jorge‐Rico, J., & Rey‐Martínez, F. J. (2020). Experimental investigation of the potential of a new fabric‐based evaporative cooling pad. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/su12177070.
Paper not yet in RePEc: Add citation now
- Vitt, R., Weber, L., Zollitsch, W., Hörtenhuber, S. J., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre, K., Hennig‐Pauka, I., Schönhart, M., & Schauberger, G. (2017). Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosystems Engineering, 164, 85–97. https://doi.org/10.1016/j.biosystemseng.2017.09.013.
Paper not yet in RePEc: Add citation now
- Wanphen, S., & Nagano, K. (2009). Experimental study of the performance of porous materials to moderate the roof surface temperature by its evaporative cooling effect. Building and Environment, 44(2), 338–351. https://doi.org/10.1016/j.buildenv.2008.03.012.
Paper not yet in RePEc: Add citation now
- Watt, J. R. (1986). Evaporative air conditioning handbook (2nd ed.). Springer US. https://doi.org/10.1007/978-1-4613-2259-7.
Paper not yet in RePEc: Add citation now
- Watt, J. R., & Brown, W. K. (1997). Evaporative air conditioning handbook (3rd ed.). The Fairmont Press, Inc.
Paper not yet in RePEc: Add citation now
- Wu, J. M., Huang, X., & Zhang, H. (2009a). Numerical investigation on the heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 29(1), 195–201. https://doi.org/10.1016/j.applthermaleng.2008.02.018.
Paper not yet in RePEc: Add citation now
- Wu, J. M., Huang, X., & Zhang, H. (2009b). Theoretical analysis on heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 29(5–6), 980–984. https://doi.org/10.1016/j.applthermaleng.2008.05.016.
Paper not yet in RePEc: Add citation now
- Xia, B., Han, J., Zhao, J. Y., & Liang, K. (2021). Technological adaptation zone of passive evaporative cooling of China, based on a clustering analysis. Sustainable Cities and Society, 66(June), 102564. https://doi.org/10.1016/j.scs.2020.102564.
Paper not yet in RePEc: Add citation now
Xu, J., Li, Y., Wang, R. Z., Liu, W., & Zhou, P. (2015). Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Applied Energy, 138, 291–301. https://doi.org/10.1016/j.apenergy.2014.10.061.
- Xuan, Y. M., Xiao, F., Niu, X. F., Huang, X., & Wang, S. W. (2012). Research and application of evaporative cooling in China: A review (I) – Research. Renewable and Sustainable Energy Reviews, 16(5), 3535–3546. https://doi.org/10.1016/j.rser.2012.01.052.
Paper not yet in RePEc: Add citation now
- Yan, M., He, S., Gao, M., Xu, M., Miao, J., Huang, X., & Hooman, K. (2020). Comparative study on the cooling performance of evaporative cooling systems using seawater and freshwater. International Journal of Refrigeration, 121, 23–32. https://doi.org/10.1016/j.ijrefrig.2020.10.003.
Paper not yet in RePEc: Add citation now
- Yan, M., He, S., Li, N., Huang, X., Gao, M., Xu, M., Miao, J., Lu, Y., Hooman, K., Che, J., Geng, Z., & Zhang, S. (2020). Experimental investigation on a novel arrangement of wet medium for evaporative cooling of air. International Journal of Refrigeration, 124, 1–11. https://doi.org/10.1016/j.ijrefrig.2020.12.014.
Paper not yet in RePEc: Add citation now
Yang, H., Shi, W., Chen, Y., & Min, Y. (2021). Research development of indirect evaporative cooling technology: An updated review. Renewable and Sustainable Energy Reviews, 145(April), 111082. https://doi.org/10.1016/j.rser.2021.111082.
Yang, Y., Cui, G., & Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling – A review. Renewable and Sustainable Energy Reviews, 113(May), 109230. https://doi.org/10.1016/j.rser.2019.06.037.
- Zeitoun, O., Ali, M., Al‐Ansary, H., & Nuhait, A. (2014). Ceramic tubes membrane technology as a new humidification technique for gas turbine inlet air cooling. International Journal of Thermal Sciences, 80(1), 1–10. https://doi.org/10.1016/j.ijthermalsci.2014.01.019.
Paper not yet in RePEc: Add citation now