create a website

Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution. (2022). Francosalas, Antonio ; Tejerogonzalez, Ana.
In: Wiley Interdisciplinary Reviews: Energy and Environment.
RePEc:bla:wireae:v:11:y:2022:i:3:n:e423.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 153

References cited by this document

Cocites: 20

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abdallah, A. S. H., Hiroshi, Y., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2014). Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. International Journal of Energy and Environmental Engineering, 5(2–3), 1–9. https://doi.org/10.1007/s40095-014-0092-6.
    Paper not yet in RePEc: Add citation now
  2. Abdullah, A., Said, I. B., & Ossen, D. R. (2019). A sustainable bio‐inspired cooling unit for hot arid regions: Integrated evaporative cooling system in wind tower. Applied Thermal Engineering, 161(July), 114201. https://doi.org/10.1016/j.applthermaleng.2019.114201.
    Paper not yet in RePEc: Add citation now
  3. Abed, F. M., Zaidan, M. H., Hasanuzzaman, M., Kumar, L., & Jasim, A. K. (2021). Modelling and experimental performance investigation of a transpired solar collector and underground heat exchanger assisted hybrid evaporative cooling system. Journal of Building Engineering, 44(April), 102620. https://doi.org/10.1016/j.jobe.2021.102620.
    Paper not yet in RePEc: Add citation now
  4. Ahmed, E. M., Abaas, O., Ahmed, M., & Ismail, M. R. (2011). Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi Journal of Biological Sciences, 18(1), 45–51. https://doi.org/10.1016/j.sjbs.2010.09.005.
    Paper not yet in RePEc: Add citation now
  5. al Assaad, D. K., Orabi, M. S., Ghaddar, N. K., Ghali, K. F., Salam, D. A., Ouahrani, D., Farran, M. T., & Habib, R. R. (2021). A sustainable localised air distribution system for enhancing thermal environment and indoor air quality of poultry house for semiarid region. Biosystems Engineering, 203, 70–92. https://doi.org/10.1016/j.biosystemseng.2021.01.002.
    Paper not yet in RePEc: Add citation now
  6. Al‐Badri, A. R., & Al‐Waaly, A. A. Y. (2017). The influence of chilled water on the performance of direct evaporative cooling. Energy and Buildings, 155, 143–150. https://doi.org/10.1016/j.enbuild.2017.09.021.
    Paper not yet in RePEc: Add citation now
  7. Al‐Sulaiman, F. (2002). Evaluation of the performance of local fibers in evaporative cooling. Energy Conversion and Management, 43(16), 2267–2273. https://doi.org/10.1016/S0196-8904(01)00121-2.
    Paper not yet in RePEc: Add citation now
  8. Alam, M. F., Sazidy, A. S., Kabir, A., Mridha, G., Litu, N. A., & Rahman, M. A. (2017). An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials. AIP Conference Proceedings, 1851, 020075. https://doi.org/10.1063/1.4984704.
    Paper not yet in RePEc: Add citation now
  9. Alamdari, P., Saedodin, S., & Rejvani, M. (2020). Do non‐metallic material and radiation shields affect the operation of direct evaporative cooling systems? International Journal of Refrigeration, 114, 98–105. https://doi.org/10.1016/j.ijrefrig.2020.02.038.
    Paper not yet in RePEc: Add citation now
  10. Alodan, M. A., & Al‐Faraj, A. A. (2005). Design and evaluation of galvanized metal sheets as evaporative cooling pads. Agricultural Science, 18(1), 9–18.
    Paper not yet in RePEc: Add citation now
  11. Amer, O., Boukhanouf, R., & Ibrahim, H. G. (2015). A review of evaporative cooling technologies. International Journal of Environmental Science and Development, 6(2), 111–117. https://doi.org/10.7763/ijesd.2015.v6.571.
    Paper not yet in RePEc: Add citation now
  12. American Society of Agricultural and Biological Engineers. (2008). ASABE standard (ANSI/ASAE EP406.4). Heating, ventilating and cooling greenhouses. American Society of Agricultural and Biological Engineers.
    Paper not yet in RePEc: Add citation now
  13. Aparicio‐Ruiz, P., Schiano‐Phan, R., & Salmerón‐Lissén, J. M. (2018). Climatic applicability of downdraught evaporative cooling in the United States of America. Building and Environment, 136(February), 162–176. https://doi.org/10.1016/j.buildenv.2018.03.039.
    Paper not yet in RePEc: Add citation now
  14. ASHRAE (2019). Evaporative cooling. In ASHRAE handbook – HVAC applications.Atlanta, GA: ASHRAE.
    Paper not yet in RePEc: Add citation now
  15. Baca, M. I., Tur, M. S., Gonzalez, N. J., & Román, A. C. (2011). Evaporative cooling efficiency according to climate conditions. Procedia Engineering, 21, 283–290. https://doi.org/10.1016/j.proeng.2011.11.2016.
    Paper not yet in RePEc: Add citation now
  16. Barzegar, M., Layeghi, M., Ebrahimi, G., Hamzeh, Y., & Khorasani, M. (2012). Experimental evaluation of the performances of cellulosic pads made out of Kraft and NSSC corrugated papers as evaporative media. Energy Conversion and Management, 54(1), 24–29. https://doi.org/10.1016/j.enconman.2011.09.016.
    Paper not yet in RePEc: Add citation now
  17. Beshkani, A., & Hosseini, R. (2006). Numerical modeling of rigid media evaporative cooler. Applied Thermal Engineering, 26(5–6), 636–643. https://doi.org/10.1016/j.applthermaleng.2005.06.006.
    Paper not yet in RePEc: Add citation now
  18. Bishoyi, D., & Sudhakar, K. (2017). Experimental performance of a direct evaporative cooler in composite climate of India. Energy and Buildings, 153, 190–200. https://doi.org/10.1016/j.enbuild.2017.08.014.
    Paper not yet in RePEc: Add citation now
  19. Brosnan, T., & Sun, D. (2001). Precooling techniques and applications for horticultural products – A review [Techniques de préréfrigération et applications pour les produits horticoles passées en revue]. International Journal of Refrigeration, 24, 154–170.
    Paper not yet in RePEc: Add citation now
  20. Camargo, J. R., Ebinuma, C. D., & Silveira, J. L. (2005). Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city. International Journal of Refrigeration, 28(7), 1124–1132. https://doi.org/10.1016/j.ijrefrig.2004.12.011.
    Paper not yet in RePEc: Add citation now
  21. Campaniço, H., Soares, P. M. M., Cardoso, R. M., & Hollmuller, P. (2019). Impact of climate change on building cooling potential of direct ventilation and evaporative cooling: A high resolution view for the Iberian Peninsula. Energy and Buildings, 192, 31–44. https://doi.org/10.1016/j.enbuild.2019.03.017.
    Paper not yet in RePEc: Add citation now
  22. Chen, W., Liu, S., & Lin, J. (2015). Analysis on the passive evaporative cooling wall constructed of porous ceramic pipes with water sucking ability. Energy and Buildings, 86, 541–549. https://doi.org/10.1016/j.enbuild.2014.10.055.
    Paper not yet in RePEc: Add citation now
  23. Chen, X., Su, Y., Aydin, D., Ding, Y., Zhang, S., Reay, D., & Riffat, S. (2018). A novel evaporative cooling system with a polymer hollow fibre spindle. Applied Thermal Engineering, 132, 665–675. https://doi.org/10.1016/j.applthermaleng.2018.01.005.
    Paper not yet in RePEc: Add citation now
  24. Chen, X., Su, Y., Aydin, D., Zhang, X., Ding, Y., Reay, D., Law, R., & Riffat, S. (2017). Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape. Energy and Buildings, 154, 166–174. https://doi.org/10.1016/j.enbuild.2017.08.068.
    Paper not yet in RePEc: Add citation now
  25. Chiesa, G., Huberman, N., & Pearlmutter, D. (2019). Geo‐climatic potential of direct evaporative cooling in the Mediterranean region: A comparison of key performance indicators. Building and Environment, 151(November), 318–337. https://doi.org/10.1016/j.buildenv.2019.01.059.
    Paper not yet in RePEc: Add citation now
  26. Cooperman, A., Dieckmann, J., & Brodrick, J. (2012). Power plant water use. ASHRAE Journal, 54(1), 65–68.
    Paper not yet in RePEc: Add citation now
  27. Cooperman, B. A., Dieckmann, J., & Brodrick, J. (2011). Water/electricity trade‐offs. ASHRAE Journal, 118–120.
    Paper not yet in RePEc: Add citation now
  28. Crow, L. W. (1972). Weather data related to evaporative cooling. ASHRAE Journal, 14(6), 60–68.
    Paper not yet in RePEc: Add citation now
  29. Cuce, P. M., & Riffat, S. (2016). A state of the art review of evaporative cooling systems for building applications. Renewable and Sustainable Energy Reviews, 54, 1240–1249. https://doi.org/10.1016/j.rser.2015.10.066.
    Paper not yet in RePEc: Add citation now
  30. Czarick, M., & Fairchild, B. (2012). Plastic less effective than paper evaporative cooling pads! World Poultry, 28(10), 26–29.
    Paper not yet in RePEc: Add citation now
  31. Dai, Y. J., & Sumathy, K. (2002). Theoretical study on a cross‐flow direct evaporative cooler using honeycomb paper as packing material. Applied Thermal Engineering, 22(13), 1417–1430. https://doi.org/10.1016/S1359-4311(02)00069-8.
    Paper not yet in RePEc: Add citation now
  32. De Melo, J. C. F., Bamberg, J. V. M., MacHado, N. S., Caldas, E. N. G., & Rodrigues, M. S. (2019). Evaporative cooling efficiency of pads consisting of vegetable loofah. Comunicata Scientiae, 10(1), 38–44. https://doi.org/10.14295/cs.v10i1.2930.
    Paper not yet in RePEc: Add citation now
  33. Del Rio, M. A., Asawa, T., & Hirayama, Y. (2020). Modeling and validation of the cool summer microclimate formed by passive cooling elements in a semi‐outdoor building space. Sustainability (Switzerland), 12(13), 5360. https://doi.org/10.3390/su12135360.

  34. Dhamneya, A. K., Rajput, S. P. S., & Singh, A. (2018). Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving. Journal of Building Engineering, 17(November), 52–64. https://doi.org/10.1016/j.jobe.2018.01.012.
    Paper not yet in RePEc: Add citation now
  35. Doğramacı, P. A., & Aydın, D. (2020). Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot‐dry climate. Journal of Building Engineering, 30(December), 101240. https://doi.org/10.1016/j.jobe.2020.101240.
    Paper not yet in RePEc: Add citation now
  36. Doğramacı, P. A., Riffat, S., Gan, G., & Aydın, D. (2019). Experimental study of the potential of eucalyptus fibres for evaporative cooling. Renewable Energy, 131, 250–260. https://doi.org/10.1016/j.renene.2018.07.005.

  37. Duan, Z., Zhan, C., Zhang, X., Mustafa, M., Zhao, X., Alimohammadisagvand, B., & Hasan, A. (2012). Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, 16, 6823–6850. https://doi.org/10.1016/j.rser.2012.07.007.
    Paper not yet in RePEc: Add citation now
  38. El‐Refaie, M. F., & Kaseb, S. (2009). Speculation in the feasibility of evaporative cooling. Building and Environment, 44(4), 826–838. https://doi.org/10.1016/j.buildenv.2008.05.020.
    Paper not yet in RePEc: Add citation now
  39. Emdadi, Z., Asim, N., Yarmo, M. A., Shamsudin, R., Mohammad, M., & Sopian, K. (2016). Green material prospects for passive evaporative cooling systems: Geopolymers. Energies, 9(8), 586. https://doi.org/10.3390/en9080586.

  40. Emdadi, Z., Maleki, A., Azizi, M., & Asim, N. (2019). Evaporative passive cooling designs for buildings. Strategic Planning for Energy and the Environment, 38(4), 63–80. https://doi.org/10.1080/10485236.2019.12054412.
    Paper not yet in RePEc: Add citation now
  41. Fidaros, D., Baxevanou, C., Bartzanas, T., & Kittas, C. (2018). Numerical study of mechanically ventilated broiler house equipped with evaporative pads. Computers and Electronics in Agriculture, 149(September), 101–109. https://doi.org/10.1016/j.compag.2017.10.016.
    Paper not yet in RePEc: Add citation now
  42. Fouda, A., & Melikyan, Z. (2011). A simplified model for analysis of heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 31(5), 932–936. https://doi.org/10.1016/j.applthermaleng.2010.11.016.
    Paper not yet in RePEc: Add citation now
  43. Franco‐Salas, A., Peña‐Fernández, A., & Valera‐Martínez, D. L. (2019). Refrigeration capacity and effect of ageing on the operation of cellulose evaporative cooling pads, by wind tunnel analysis. International Journal of Environmental Research and Public Health, 16(23), 4690. https://doi.org/10.3390/ijerph16234690.
    Paper not yet in RePEc: Add citation now
  44. Franco, A., Valera, D. L., & Peña, A. (2014). Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 7(3), 1427–1447. https://doi.org/10.3390/en7031427.

  45. Franco, A., Valera, D. L., Madueño, A., & Peña, A. (2010). Influence of water and air flow on the performance of cellulose evaporative cooling pads used in Mediterranean greenhouses. Transactions of the ASABE, 53(March), 565–576.
    Paper not yet in RePEc: Add citation now
  46. Franco, A., Valera, D. L., Peña, A., & Pérez, A. M. (2011). Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses. Computers and Electronics in Agriculture, 76(2), 218–230. https://doi.org/10.1016/j.compag.2011.01.019.
    Paper not yet in RePEc: Add citation now
  47. Ghani, S., Bakochristou, F., ElBialy, E. M. A. A., Gamaledin, S. M. A., Rashwan, M. M., Abdelhalim, A. M., & Ismail, S. M. (2019). Design challenges of agricultural greenhouses in hot and arid environments – A review. Engineering in Agriculture, Environment and Food, 12, 48–70. https://doi.org/10.1016/j.eaef.2018.09.004.
    Paper not yet in RePEc: Add citation now
  48. Ghoulem, M., El Moueddeb, K., Nehdi, E., Zhong, F., & Calautit, J. (2020). Design of a passive downdraught evaporative cooling windcatcher (PDEC‐WC) system for greenhouses in hot climates. Energies, 13(11). https://doi.org/10.3390/en13112934.
    Paper not yet in RePEc: Add citation now
  49. Guan, L., Bennett, M., & Bell, J. (2015). Evaluating the potential use of direct evaporative cooling in Australia. Energy and Buildings, 108, 185–194. https://doi.org/10.1016/j.enbuild.2015.09.020.
    Paper not yet in RePEc: Add citation now
  50. Gunhan, T., Demir, V., & Yagcioglu, A. K. (2007). Evaluation of the suitability of some local materials as cooling pads. Biosystems Engineering, 96(3), 369–377. https://doi.org/10.1016/j.biosystemseng.2006.12.001.
    Paper not yet in RePEc: Add citation now
  51. Harby, K., & Al‐amri, F. (2019). An investigation on energy savings of a split air‐conditioning using different commercial cooling pad thicknesses and climatic conditions. Energy, 182, 321–336. https://doi.org/10.1016/j.energy.2019.06.031.

  52. Hasani Balyani, H., Sohani, A., Sayyaadi, H., & Karami, R. (2015). Acquiring the best cooling strategy based on thermal comfort and 3E analyses for small scale residential buildings at diverse climatic conditions. International Journal of Refrigeration, 57, 112–137. https://doi.org/10.1016/j.ijrefrig.2015.04.008.
    Paper not yet in RePEc: Add citation now
  53. He, J. (2011). A design supporting simulation system for predicting and evaluating the cool microclimate creating effect of passive evaporative cooling walls. Building and Environment, 46(3), 584–596. https://doi.org/10.1016/j.buildenv.2010.09.005.
    Paper not yet in RePEc: Add citation now
  54. He, J., & Hoyano, A. (2010). Experimental study of cooling effects of a passive evaporative cooling wall constructed of porous ceramics with high water soaking‐up ability. Building and Environment, 45(2), 461–472. https://doi.org/10.1016/j.buildenv.2009.07.002.
    Paper not yet in RePEc: Add citation now
  55. He, J., & Hoyano, A. (2011). Experimental study of practical applications of a passive evaporative cooling wall with high water soaking‐up ability. Building and Environment, 46(1), 98–108. https://doi.org/10.1016/j.buildenv.2010.07.004.
    Paper not yet in RePEc: Add citation now
  56. He, S., Guan, Z., Gurgenci, H., Hooman, K., & Alkhedhair, A. M. (2014). Experimental study of heat transfer coefficient and pressure drop of cellulose corrugated media. In Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014 (pp. 3–6).
    Paper not yet in RePEc: Add citation now
  57. He, S., Guan, Z., Gurgenci, H., Hooman, K., Lu, Y., & Alkhedhair, A. M. (2014). Experimental study of film media used for evaporative pre‐cooling of air. Energy Conversion and Management, 87, 874–884. https://doi.org/10.1016/j.enconman.2014.07.084.
    Paper not yet in RePEc: Add citation now
  58. He, S., Guan, Z., Gurgenci, H., Jahn, I., Lu, Y., & Alkhedhair, A. M. (2014). Influence of ambient conditions and water flow on the performance of pre‐cooled natural draft dry cooling towers. Applied Thermal Engineering, 66(1–2), 621–631. https://doi.org/10.1016/j.applthermaleng.2014.02.070.
    Paper not yet in RePEc: Add citation now
  59. He, S., Gurgenci, H., Guan, Z., Huang, X., & Lucas, M. (2015). A review of wetted media with potential application in the pre‐cooling of natural draft dry cooling towers. Renewable and Sustainable Energy Reviews, 44, 407–422. https://doi.org/10.1016/j.rser.2014.12.037.
    Paper not yet in RePEc: Add citation now
  60. He, W., Xilian, L., Yuhui, S., Min, Z., & Zhaolin, G. (2018). Research of evaporative cooling experiment in summer of residential buildings in Xi'an. Energy Procedia, 152, 928–934. https://doi.org/10.1016/j.egypro.2018.09.095.
    Paper not yet in RePEc: Add citation now
  61. Hweij, W. A., Al Touma, A., Ghali, K., & Ghaddar, N. (2017). Evaporatively‐cooled window driven by solar chimney to improve energy efficiency and thermal comfort in dry desert climate. Energy and Buildings, 139(2017), 755–761. https://doi.org/10.1016/j.enbuild.2017.01.071.
    Paper not yet in RePEc: Add citation now
  62. Ibrahim, E., Shao, L., & Riffat, S. B. (2003). Performance of porous ceramic evaporators for building cooling application. Energy and Buildings, 35(9), 941–949. https://doi.org/10.1016/S0378-7788(03)00019-7.
    Paper not yet in RePEc: Add citation now
  63. Jain, J. K., & Hindoliya, D. A. (2011). Experimental performance of new evaporative cooling pad materials. Sustainable Cities and Society, 1(4), 252–256. https://doi.org/10.1016/j.scs.2011.07.005.
    Paper not yet in RePEc: Add citation now
  64. Jain, J. K., & Hindoliya, D. A. (2014). Correlations for saturation efficiency of evaporative cooling pads. Journal of the Institution of Engineers (India): Series C, 95(1), 5–10. https://doi.org/10.1007/s40032-014-0098-0.
    Paper not yet in RePEc: Add citation now
  65. Kabeel, A. E., & Bassuoni, M. M. (2017). A simplified experimentally tested theoretical model to reduce water consumption of a direct evaporative cooler for dry climates. International Journal of Refrigeration, 82, 487–494. https://doi.org/10.1016/j.ijrefrig.2017.06.010.
    Paper not yet in RePEc: Add citation now
  66. Ketwong, W., Deethayat, T., & Kiatsiriroat, T. (2021). Performance enhancement of air conditioner in hot climate by condenser cooling with cool air generated by direct evaporative cooling. Case Studies in Thermal Engineering, 26(January), 101127. https://doi.org/10.1016/j.csite.2021.101127.
    Paper not yet in RePEc: Add citation now
  67. Khalvati, F., & Omidvar, A. (2019). Summer study on thermal performance of an exhausting airflow window in evaporatively‐cooled buildings. Applied Thermal Engineering, 153(January), 147–158. https://doi.org/10.1016/j.applthermaleng.2019.02.135.
    Paper not yet in RePEc: Add citation now
  68. Khosravi, N., Aydin, D., Karim Nejhad, M., & Dogramaci, P. A. (2020). Comparative performance analysis of direct and desiccant assisted evaporative cooling systems using novel candidate materials. Energy Conversion and Management, 221(April), 113167. https://doi.org/10.1016/j.enconman.2020.113167.
    Paper not yet in RePEc: Add citation now
  69. Kojok, F., Fardoun, F., Younes, R., & Outbib, R. (2016). Hybrid cooling systems: A review and an optimized selection scheme. Renewable and Sustainable Energy Reviews, 65, 57–80. https://doi.org/10.1016/j.rser.2016.06.092.
    Paper not yet in RePEc: Add citation now
  70. Korese, J. K., & Hensel, O. (2016). Experimental evaluation of bulk charcoal pad configuration on evaporative cooling effectiveness. Agricultural Engineering International: CIGR Journal, 18(4), 11–21.
    Paper not yet in RePEc: Add citation now
  71. Kovačević, I., & Sourbron, M. (2017). The numerical model for direct evaporative cooler. Applied Thermal Engineering, 113, 8–19. https://doi.org/10.1016/j.applthermaleng.2016.11.025.
    Paper not yet in RePEc: Add citation now
  72. Kowalski, P., & Kwiecień, D. (2020). Evaluation of simple evaporative cooling systems in an industrial building in Poland. Journal of Building Engineering, 32(January), 101555. https://doi.org/10.1016/j.jobe.2020.101555.
    Paper not yet in RePEc: Add citation now
  73. Kubilay, A., Ferrari, A., Derome, D., & Carmeliet, J. (2021). Smart wetting of permeable pavements as an evaporative‐cooling measure for improving the urban climate during heat waves. Journal of Building Physics, 45(1), 36–66. https://doi.org/10.1177/1744259120968586.
    Paper not yet in RePEc: Add citation now
  74. Kumar, S., Singh, J., Siyag, J., & Rambhatla, S. (2020). Potential alternative materials used in evaporative coolers for sustainable energy applications: A review. International Journal of Air‐Conditioning and Refrigeration, 28(4), 2030006. https://doi.org/10.1142/s2010132520300062.
    Paper not yet in RePEc: Add citation now
  75. Laknizi, A., Ben Abdellah, A., & Mahdaoui, M. (2021). Application of Taguchi and ANOVA methods in the optimisation of a direct evaporative cooling pad. International Journal of Sustainable Engineering, 00(00), 1–11. https://doi.org/10.1080/19397038.2020.1866707.
    Paper not yet in RePEc: Add citation now
  76. Laknizi, A., Ben Abdellah, A., Faqir, M., Essadiqi, E., & Dhimdi, S. (2019). Performance characterization of a direct evaporative cooling pad based on pottery material. International Journal of Sustainable Engineering, 00(00), 1–11. https://doi.org/10.1080/19397038.2019.1677800.
    Paper not yet in RePEc: Add citation now
  77. Laknizi, A., Mahdaoui, M., Ben Abdellah, A., Anoune, K., Bakhouya, M., & Ezbakhe, H. (2019). Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco. Case Studies in Thermal Engineering, 13(October), 100362. https://doi.org/10.1016/j.csite.2018.11.013.
    Paper not yet in RePEc: Add citation now
  78. Lal Basediya, A., Samuel, D. V. K., & Beera, V. (2013). Evaporative cooling system for storage of fruits and vegetables – A review. Journal of Food Science and Technology, 50(3), 429–442. https://doi.org/10.1007/s13197-011-0311-6.
    Paper not yet in RePEc: Add citation now
  79. Li, Y., & He, J. (2021). Evaluating the improvement effect of low‐energy strategies on the summer indoor thermal environment and cooling energy consumption in a library building: A case study in a hot‐humid and less‐windy city of China. Building Simulation, 14(5), 1423–1437. https://doi.org/10.1007/s12273-020-0747-6.
    Paper not yet in RePEc: Add citation now
  80. Liao, C. M., & Chiu, K. H. (2002). Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region. Building and Environment, 37(2), 177–187. https://doi.org/10.1016/S0360-1323(00)00098-6.
    Paper not yet in RePEc: Add citation now
  81. Liao, C. M., Singh, S., & Wang, T. S. (1998). Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications. Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering, 33(7), 1391–1417. https://doi.org/10.1080/10934529809376795.
    Paper not yet in RePEc: Add citation now
  82. Lomas, K. J., Fiala, D., Cook, M. J., & Cropper, P. C. (2004). Building bioclimatic charts for non‐domestic buildings and passive downdraught evaporative cooling. Building and Environment, 39(6), 661–676. https://doi.org/10.1016/j.buildenv.2003.12.011.
    Paper not yet in RePEc: Add citation now
  83. López, A., Valera, D. L., Molina‐Aiz, F. D., & Peña, A. (2012). Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with pad‐fan and fog systems. Biosystems Engineering, 113(4), 334–350. https://doi.org/10.1016/j.biosystemseng.2012.09.006.
    Paper not yet in RePEc: Add citation now
  84. Lotfizadeh, H., Razzaghi, H., & Layeghi, M. (2013). Experimental performance analysis of a solar evaporative cooler with three different types of pads. Journal of Renewable and Sustainable Energy, 5(6), 1–14. https://doi.org/10.1063/1.4831779.
    Paper not yet in RePEc: Add citation now
  85. Malli, A., Seyf, H. R., Layeghi, M., Sharifian, S., & Behravesh, H. (2011). Investigating the performance of cellulosic evaporative cooling pads. Energy Conversion and Management, 52(7), 2598–2603. https://doi.org/10.1016/j.enconman.2010.12.015.
    Paper not yet in RePEc: Add citation now
  86. Martínez, P., Ruiz, J., Cutillas, C. G., Martínez, P. J., Kaiser, A. S., & Lucas, M. (2016). Experimental study on energy performance of a split air‐conditioner by using variable thickness evaporative cooling pads coupled to the condenser. Applied Thermal Engineering, 105, 1041–1050. https://doi.org/10.1016/j.applthermaleng.2016.01.067.
    Paper not yet in RePEc: Add citation now
  87. Martínez, P., Ruiz, J., Martínez, P. J., Kaiser, A. S., & Lucas, M. (2018). Experimental study of the energy and exergy performance of a plastic mesh evaporative pad used in air conditioning applications. Applied Thermal Engineering, 138(March), 675–685. https://doi.org/10.1016/j.applthermaleng.2018.04.065.
    Paper not yet in RePEc: Add citation now
  88. Martínez, R. S., Palladino, R. A., Banchero, G., Fernández‐Martín, R., Nanni, M., Juliano, N., Iorio, J., & La Manna, A. (2021). Providing heat‐stress abatement to late‐lactation Holstein cows affects hormones, metabolite blood profiles, and hepatic gene expression but not productive responses. Applied Animal Science, 37(4), 490–503. https://doi.org/10.15232/aas.2020-02109.
    Paper not yet in RePEc: Add citation now
  89. Misra, D., & Ghosh, S. (2018). Evaporative cooling technologies for greenhouses: A comprehensive review. Agricultural Engineering International: CIGR Journal, 20(1), 1–15.
    Paper not yet in RePEc: Add citation now
  90. Mohamed, S., Al‐Khatri, H., Calautit, J., Omer, S., & Riffat, S. (2021). The impact of a passive wall combining natural ventilation and evaporative cooling on schools' thermal conditions in a hot climate. Journal of Building Engineering, 44(December), 102624. https://doi.org/10.1016/j.jobe.2021.102624.
    Paper not yet in RePEc: Add citation now
  91. Mohammad, A. T., Mat, S. B., Sulaiman, M. Y., Sopian, K., & Al‐Abidi, A. A. (2013). Experimental performance of a direct evaporative cooler operating in Kuala Lumpur. International Journal of of Thermal & Environmental Engineering, 6(1), 15–20. https://doi.org/10.5383/ijtee.06.01.003.
    Paper not yet in RePEc: Add citation now
  92. Moran, F., Fosas, D., Coley, D., Natarajan, S., Orr, J., & Ahmad, O. B. (2021). Improving thermal comfort in refugee shelters in desert environments. Energy for Sustainable Development, 61, 28–45. https://doi.org/10.1016/j.esd.2020.12.008.
    Paper not yet in RePEc: Add citation now
  93. Nada, S. A., Elattar, H. F., Mahoud, M. A., & Fouda, A. (2020). Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers. Energy, 211, 118678. https://doi.org/10.1016/j.energy.2020.118678.

  94. Nada, S. A., Fouda, A., Mahmoud, M. A., & Elattar, H. F. (2019). Experimental investigation of energy and exergy performance of a direct evaporative cooler using a new pad type. Energy and Buildings, 203, 109449. https://doi.org/10.1016/j.enbuild.2019.109449.
    Paper not yet in RePEc: Add citation now
  95. Naderi, E., Sajadi, B., Naderi, E., & Bakhti, B. (2020). Simulation‐based performance analysis of residential direct evaporative coolers in four climate regions of Iran. Journal of Building Engineering, 32(May), 101514. https://doi.org/10.1016/j.jobe.2020.101514.
    Paper not yet in RePEc: Add citation now
  96. Naveenprabhu, V., & Suresh, M. (2020). Performance enhancement studies on evaporative cooling using volumetric heat and mass transfer coefficients. Numerical Heat Transfer; Part A: Applications, 0(0), 1–20. https://doi.org/10.1080/10407782.2020.1793556.
    Paper not yet in RePEc: Add citation now
  97. Navon, R., & Arkin, H. (1993). Economic comparison of an air‐conditioner and a desert cooler for residences in arid areas. Construction Management and Economics, 11(1), 62–70. https://doi.org/10.1080/01446199300000065.
    Paper not yet in RePEc: Add citation now
  98. Ndukwu, M. C., & Manuwa, S. I. (2015). A techno‐economic assessment for viability of some waste as cooling pads in evaporative cooling system. International Journal of Agricultural and Biological Engineering, 8(2), 151–158. https://doi.org/10.3965/j.ijabe.20150802.952.
    Paper not yet in RePEc: Add citation now
  99. Odesola, I., & Onyebuchi, O. (2009). A review of porous evaporative cooling for the preservation of fruits and vegetables. Pacific Journal of Science and Technology, 10(2), 935–941.
    Paper not yet in RePEc: Add citation now
  100. Okafor, V. C. (2017). Review on evaporative cooling systems. Greener Journal of Science, Engineering and Technological Research, 7(1), 001–020. https://doi.org/10.15580/gjsetr.2017.1.031817038.
    Paper not yet in RePEc: Add citation now
  101. Oropeza‐perez, I., & Østergaard, P. A. (2018). Active and passive cooling methods for dwellings: A review. Renewable and Sustainable Energy Reviews, 82(August), 531–544. https://doi.org/10.1016/j.rser.2017.09.059.
    Paper not yet in RePEc: Add citation now
  102. Pacak, A., & Worek, W. (2021). Review of dew point evaporative cooling technology for air conditioning applications. Applied Sciences (Switzerland), 11(3), 1–16. https://doi.org/10.3390/app11030934.
    Paper not yet in RePEc: Add citation now
  103. Pandelidis, D., Pacak, A., Cicho, A., Gizicki, W., Worek, W., & Cetin, S. (2020). Experimental study of plate materials for evaporative air coolers. International Communications in Heat and Mass Transfer, 120, 105049. https://doi.org/10.1016/j.icheatmasstransfer.2020.105049.
    Paper not yet in RePEc: Add citation now
  104. Parison, S., Hendel, M., Grados, A., & Royon, L. (2020). Analysis of the heat budget of standard, cool and watered pavements under lab heat‐wave conditions. Energy and Buildings, 228, 110455. https://doi.org/10.1016/j.enbuild.2020.110455.
    Paper not yet in RePEc: Add citation now
  105. Paschold, H., Li, W. W., Morales, H., & Walton, J. (2003). Laboratory study of the impact of evaporative coolers on indoor PM concentrations. Atmospheric Environment, 37(8), 1075–1086. https://doi.org/10.1016/S1352-2310(02)00969-X.
    Paper not yet in RePEc: Add citation now
  106. Pérez‐Urrestarazu, L., Fernández‐Cañero, R., Franco‐Salas, A., & Egea, G. (2015). Vertical greening systems and sustainable cities. Journal of Urban Technology, 22(4), 65–85. https://doi.org/10.1080/10630732.2015.1073900.

  107. Pérez‐Urrestarazu, L., Fernández‐Cañero, R., Franco, A., & Egea, G. (2016). Influence of an active living wall on indoor temperature and humidity conditions. Ecological Engineering, 90, 120–124. https://doi.org/10.1016/j.ecoleng.2016.01.050.
    Paper not yet in RePEc: Add citation now
  108. Periannan, V. (2013). Humidification, filtration and sound attenuation benefits of rigid media direct evaporative cooling systems while providing energy savings. In 2013 ASHRAE Annual Conference DE‐13‐C049 (pp. 1–9).
    Paper not yet in RePEc: Add citation now
  109. Pistochini, T., & Modera, M. (2011). Water‐use efficiency for alternative cooling technologies in arid climates. Energy and Buildings, 43(2–3), 631–638. https://doi.org/10.1016/j.enbuild.2010.11.004.
    Paper not yet in RePEc: Add citation now
  110. Purswell, J. L., Linhoss, J. E., Edge, C. M., Davis, J. D., & Campbell, J. C. (2018). Water supply rates for recirculating evaporative cooling systems. Applied Engineering in Agriculture ASABE, 34(3), 581–590.
    Paper not yet in RePEc: Add citation now
  111. Ramzan, M., Kamran, M. S., Saleem, M. W., Ali, H., & Zeinelabdeen, M. I. M. (2021). Energy efficiency improvement of the split air conditioner through condensate assisted evaporative cooling. Arabian Journal for Science and Engineering, 46(8), 7719–7727. https://doi.org/10.1007/s13369-021-05494-x.
    Paper not yet in RePEc: Add citation now
  112. Rawangkul, R., Khedari, J., Hirunlabh, J., & Zeghmati, B. (2008). Performance analysis of a new sustainable evaporative cooling pad made from coconut coir. International Journal of Sustainable Engineering, 1(2), 117–131. https://doi.org/10.1080/19397030802326726.
    Paper not yet in RePEc: Add citation now
  113. Raza, H. M. U., Sultan, M., Bahrami, M., & Khan, A. A. (2021). Experimental investigation of evaporative cooling systems for agricultural storage and livestock air‐conditioning in Pakistan. Building Simulation, 14(3), 617–631. https://doi.org/10.1007/s12273-020-0678-2.
    Paper not yet in RePEc: Add citation now
  114. Rey‐Martínez, F. J., SanJosé‐Alonso, J. F., Velasco‐Gómez, E., Tejero‐González, A., Esquivias, P. M., & Rey‐Hernández, J. M. (2020). Energy consumption reduction of a chiller plant by adding evaporative pads to decrease condensation temperature. Energies, 13(9). https://doi.org/10.3390/en13092218.

  115. Rey‐Martínez, F. J., Velasco‐Gómez, E., Tejero‐González, A., & Flores Murrieta, F. E. (2010). Comparative study between a ceramic evaporative cooler (CEC) and an air‐source heat pump applied to a dwelling in Spain. Energy and Buildings, 42(10), 1815–1822. https://doi.org/10.1016/j.enbuild.2010.05.018.
    Paper not yet in RePEc: Add citation now
  116. Rong, L., Pedersen, P., Jensen, T. L., Morsing, S., & Zhang, G. (2017). Dynamic performance of an evaporative cooling pad investigated in a wind tunnel for application in hot and arid climate. Biosystems Engineering, 156, 173–182. https://doi.org/10.1016/j.biosystemseng.2017.02.003.
    Paper not yet in RePEc: Add citation now
  117. Rosa, J. F. V., Tinôco, I. F. F., Fernandes, C. M., Zolnier, S., & Bueno, M. M. (2011). Análise da Eficiência de Resfriamento de Painéis Porosos Preenchidos com Argila Expandida em Comparação aos de Celulose Usando Túnel de Vento. Revista Engenharia Na Agricultura – REVENG, 19(6), 516–523. https://doi.org/10.13083/1414-3984.v19n06a03.
    Paper not yet in RePEc: Add citation now
  118. Saif, J., Wright, A., Khattak, S., & Elfadli, K. (2021). Keeping cool in the desert: Using wind catchers for improved thermal comfort and indoor air quality at half the energy. Buildings, 11(3). https://doi.org/10.3390/buildings11030100.
    Paper not yet in RePEc: Add citation now
  119. Samam, W., Bruno, F., & Liu, M. (2009). Technical background research on evaporative air conditioners and feasibility of rating their water consumption. Water Rating (p. 61). Retrieved from copyright@agriculture.gov.au.
    Paper not yet in RePEc: Add citation now
  120. Sellami, K., Feddaoui, M., Labsi, N., Najim, M., & Benkahla, Y. K. (2019). Numerical simulations of heat and mass transfer process of a direct evaporative cooler from a porous layer. Journal of Heat Transfer, 141(7), 1–10. https://doi.org/10.1115/1.4043302.
    Paper not yet in RePEc: Add citation now
  121. Shah, B., Dwivedi, S., & Singhal, A. (2019). Energy saving in split air conditioner using evaporative cooling pad at the ODU. International Journal of Innovative Technology and Exploring Engineering, 9(1), 1858–1862. https://doi.org/10.35940/ijitee.A4765.119119.
    Paper not yet in RePEc: Add citation now
  122. Shah, N., Park, W. Y., & Ding, C. (2021). Trends in best‐in‐class energy‐efficient technologies for room air conditioners. Energy Reports, 7, 3162–3170. https://doi.org/10.1016/j.egyr.2021.05.016.
    Paper not yet in RePEc: Add citation now
  123. Sharma, K. K., & Katarey, S. (2019). Cost benefit analysis of window air conditioning system with evaporative cooled condenser. International Journal of Innovative Technology and Exploring Engineering, 8(11), 3761–3764. https://doi.org/10.35940/ijitee.J9665.0981119.
    Paper not yet in RePEc: Add citation now
  124. Shekhar, R., Chopra, M. K., & Purohit, R. (2016). Design of compact evaporative cooler to improve cooling efficiency and to evaluate performance of different cooling pad material. International Journal for Scientific Research & Development, 4(01), 21–27.
    Paper not yet in RePEc: Add citation now
  125. Sheng, C., & Agwu Nnanna, A. G. (2012). Empirical correlation of cooling efficiency and transport phenomena of direct evaporative cooler. Applied Thermal Engineering, 40, 48–55. https://doi.org/10.1016/j.applthermaleng.2012.01.052.
    Paper not yet in RePEc: Add citation now
  126. Sohani, A., Sayyaadi, H., & Mohammadhosseini, N. (2018). Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. Energy Conversion and Management, 158(January), 327–345. https://doi.org/10.1016/j.enconman.2017.12.042.
    Paper not yet in RePEc: Add citation now
  127. Sohani, A., Zabihigivi, M., Moradi, M. H., Sayyaadi, H., & Hasani Balyani, H. (2017). A comprehensive performance investigation of cellulose evaporative cooling pad systems using predictive approaches. Applied Thermal Engineering, 110, 1589–1608. https://doi.org/10.1016/j.applthermaleng.2016.08.216.
    Paper not yet in RePEc: Add citation now
  128. Soponpongpipat, N., & Kositchaimongkol, S. (2011). Recycled high‐density polyethylene and rice husk as a wetted pad in evaporative cooling system. American Journal of Applied Sciences, 8(2), 186–191. https://doi.org/10.3844/ajassp.2011.186.191.
    Paper not yet in RePEc: Add citation now
  129. Soto, A., Martínez, P. J., Martínez, P., & Tudela, J. A. (2021). Simulation and experimental study of residential building with north side wind tower assisted by solar chimneys. Journal of Building Engineering, 43(April), 102562. https://doi.org/10.1016/j.jobe.2021.102562.
    Paper not yet in RePEc: Add citation now
  130. Spentzou, E., Cook, M. J., & Emmitt, S. (2021). Low‐energy cooling and ventilation refurbishments for buildings in a Mediterranean climate. Architectural Engineering and Design Management, 1–22. https://doi.org/10.1080/17452007.2021.1926898.
    Paper not yet in RePEc: Add citation now
  131. Sreeram, V., Gebrehiwot, B., Sathyanarayan, S., Sawant, D., Agonafer, D., Kannan, N., J. Hoverson Kaler, M. (2015). Factors that affect the performance characteristics of wet cooling pads for data center applications. In Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2015, April (pp. 195–202). https://doi.org/10.1109/SEMI-THERM.2015.7100160.
    Paper not yet in RePEc: Add citation now
  132. Suranjan Salins, S., Kota Reddy, S., & Kumar, S. (2021). Experimental investigation on use of alternative innovative materials for sustainable cooling applications. International Journal of Sustainable Engineering, 14, 1207–1217. https://doi.org/10.1080/19397038.2021.1924894.
    Paper not yet in RePEc: Add citation now
  133. Tejero‐González, A., & Franco‐Salas, A. (2021). Optimal operation of evaporative cooling pads: A review. Renewable and Sustainable Energy Reviews, 151, 111632.
    Paper not yet in RePEc: Add citation now
  134. Tejero‐González, A., Andrés‐Chicote, M., García‐Ibáñez, P., Velasco‐Gómez, E., & Rey‐Martínez, F. J. (2016). Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and Sustainable Energy Reviews, 65, 727–742. https://doi.org/10.1016/j.rser.2016.06.077.
    Paper not yet in RePEc: Add citation now
  135. Tewari, P., Mathur, S., & Mathur, J. (2019). Thermal performance prediction of office buildings using direct evaporative cooling systems in the composite climate of India. Building and Environment, 157(April), 64–78. https://doi.org/10.1016/j.buildenv.2019.04.044.
    Paper not yet in RePEc: Add citation now
  136. Tewari, P., Mathur, S., Mathur, J., Kumar, S., & Loftness, V. (2019). Field study on indoor thermal comfort of office buildings using evaporative cooling in the composite climate of India. Energy and Buildings, 199, 145–163. https://doi.org/10.1016/j.enbuild.2019.06.049.
    Paper not yet in RePEc: Add citation now
  137. Tewari, P., Mathur, S., Mathur, J., Loftness, V., & Abdul‐Aziz, A. (2019). Advancing building bioclimatic design charts for the use of evaporative cooling in the composite climate of India. Energy and Buildings, 184, 177–192. https://doi.org/10.1016/j.enbuild.2018.12.005.
    Paper not yet in RePEc: Add citation now
  138. Ulpiani, G. (2019). Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts. Applied Energy, 254(April), 113647. https://doi.org/10.1016/j.apenergy.2019.113647.

  139. Velasco‐Gómez, E., Tejero‐González, A., Jorge‐Rico, J., & Rey‐Martínez, F. J. (2020). Experimental investigation of the potential of a new fabric‐based evaporative cooling pad. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/su12177070.
    Paper not yet in RePEc: Add citation now
  140. Vitt, R., Weber, L., Zollitsch, W., Hörtenhuber, S. J., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre, K., Hennig‐Pauka, I., Schönhart, M., & Schauberger, G. (2017). Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosystems Engineering, 164, 85–97. https://doi.org/10.1016/j.biosystemseng.2017.09.013.
    Paper not yet in RePEc: Add citation now
  141. Wanphen, S., & Nagano, K. (2009). Experimental study of the performance of porous materials to moderate the roof surface temperature by its evaporative cooling effect. Building and Environment, 44(2), 338–351. https://doi.org/10.1016/j.buildenv.2008.03.012.
    Paper not yet in RePEc: Add citation now
  142. Watt, J. R. (1986). Evaporative air conditioning handbook (2nd ed.). Springer US. https://doi.org/10.1007/978-1-4613-2259-7.
    Paper not yet in RePEc: Add citation now
  143. Watt, J. R., & Brown, W. K. (1997). Evaporative air conditioning handbook (3rd ed.). The Fairmont Press, Inc.
    Paper not yet in RePEc: Add citation now
  144. Wu, J. M., Huang, X., & Zhang, H. (2009a). Numerical investigation on the heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 29(1), 195–201. https://doi.org/10.1016/j.applthermaleng.2008.02.018.
    Paper not yet in RePEc: Add citation now
  145. Wu, J. M., Huang, X., & Zhang, H. (2009b). Theoretical analysis on heat and mass transfer in a direct evaporative cooler. Applied Thermal Engineering, 29(5–6), 980–984. https://doi.org/10.1016/j.applthermaleng.2008.05.016.
    Paper not yet in RePEc: Add citation now
  146. Xia, B., Han, J., Zhao, J. Y., & Liang, K. (2021). Technological adaptation zone of passive evaporative cooling of China, based on a clustering analysis. Sustainable Cities and Society, 66(June), 102564. https://doi.org/10.1016/j.scs.2020.102564.
    Paper not yet in RePEc: Add citation now
  147. Xu, J., Li, Y., Wang, R. Z., Liu, W., & Zhou, P. (2015). Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Applied Energy, 138, 291–301. https://doi.org/10.1016/j.apenergy.2014.10.061.

  148. Xuan, Y. M., Xiao, F., Niu, X. F., Huang, X., & Wang, S. W. (2012). Research and application of evaporative cooling in China: A review (I) – Research. Renewable and Sustainable Energy Reviews, 16(5), 3535–3546. https://doi.org/10.1016/j.rser.2012.01.052.
    Paper not yet in RePEc: Add citation now
  149. Yan, M., He, S., Gao, M., Xu, M., Miao, J., Huang, X., & Hooman, K. (2020). Comparative study on the cooling performance of evaporative cooling systems using seawater and freshwater. International Journal of Refrigeration, 121, 23–32. https://doi.org/10.1016/j.ijrefrig.2020.10.003.
    Paper not yet in RePEc: Add citation now
  150. Yan, M., He, S., Li, N., Huang, X., Gao, M., Xu, M., Miao, J., Lu, Y., Hooman, K., Che, J., Geng, Z., & Zhang, S. (2020). Experimental investigation on a novel arrangement of wet medium for evaporative cooling of air. International Journal of Refrigeration, 124, 1–11. https://doi.org/10.1016/j.ijrefrig.2020.12.014.
    Paper not yet in RePEc: Add citation now
  151. Yang, H., Shi, W., Chen, Y., & Min, Y. (2021). Research development of indirect evaporative cooling technology: An updated review. Renewable and Sustainable Energy Reviews, 145(April), 111082. https://doi.org/10.1016/j.rser.2021.111082.

  152. Yang, Y., Cui, G., & Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling – A review. Renewable and Sustainable Energy Reviews, 113(May), 109230. https://doi.org/10.1016/j.rser.2019.06.037.

  153. Zeitoun, O., Ali, M., Al‐Ansary, H., & Nuhait, A. (2014). Ceramic tubes membrane technology as a new humidification technique for gas turbine inlet air cooling. International Journal of Thermal Sciences, 80(1), 1–10. https://doi.org/10.1016/j.ijthermalsci.2014.01.019.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. The Carbon Reduction Mechanism and Adaptive Planning Strategies of TOD Block Form Regulation Oriented to Microclimate Effects. (2025). Liu, Chuanyan ; Han, Song ; Dai, Peng ; Wang, Yanjun ; Fu, Guannan.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:1:p:358-:d:1560905.

    Full description at Econpapers || Download paper

  2. Enhancing Dewpoint Indirect Evaporative Cooling with Intermittent Water Spraying and Advanced Materials: A Review. (2025). Stefaniak, Ukasz ; Grabka, Agnieszka ; Walaszczyk, Juliusz ; Wochniak, Maja ; Yta, Weronika ; Jaska, Wiktoria ; Danielewicz, Jan ; Rajski, Krzysztof.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:9:p:2296-:d:1646562.

    Full description at Econpapers || Download paper

  3. Feasibility analysis of desiccant evaporative cooling technologies in various climate conditions: Present and future potential. (2025). Zeoli, Alanis ; Pacak, Anna ; Gendebien, Samuel ; Chorowski, Maciej ; Xie, Xiaoyun ; Lemort, Vincent.
    In: Energy.
    RePEc:eee:energy:v:327:y:2025:i:c:s0360544225018997.

    Full description at Econpapers || Download paper

  4. A Systematic Review of Passive Cooling Methods in Hot and Humid Climates Using a Text Mining-Based Bibliometric Approach. (2024). Kubota, Tetsu ; Asawa, Takashi ; Nagasue, Momoka ; Kitagawa, Haruka.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:4:p:1420-:d:1335400.

    Full description at Econpapers || Download paper

  5. Numerical simulation methods of tree effects on microclimate: A review. (2024). Li, Ruibin ; Gao, Naiping ; Chang, Min ; Wang, Liangzhu ; Niu, Jianlei ; Zeng, Fanxing ; Zhao, YI ; Wu, Yan ; Shi, Xing.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005781.

    Full description at Econpapers || Download paper

  6. Experimental and Numerical Analysis on Effect of Passive Cooling Methods on an Indoor Thermal Environment Having Floor-Level Windows. (2022). Xu, XI ; Asawa, Takashi ; Zhang, Lulu ; Qin, Beilei.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:13:p:7880-:d:850455.

    Full description at Econpapers || Download paper

  7. Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads. (2022). Jacnevs, Vladislavs ; Zajecs, Deniss ; Brahmanis, Arturs ; Mucenieks, Armands ; Prozuments, Aleksejs.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:11:p:3875-:d:823089.

    Full description at Econpapers || Download paper

  8. Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations. (2022). Kota, S V ; Kumar, Shiva ; Salins, Sampath Suranjan.
    In: Energy.
    RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031479.

    Full description at Econpapers || Download paper

  9. Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution. (2022). Francosalas, Antonio ; Tejerogonzalez, Ana.
    In: Wiley Interdisciplinary Reviews: Energy and Environment.
    RePEc:bla:wireae:v:11:y:2022:i:3:n:e423.

    Full description at Econpapers || Download paper

  10. A Review on Green Technology Practices at BRICS Countries: Brazil, Russia, India, China, and South Africa. (2021). Pilatti, Luiz Alberto ; Moletta, Juliana ; Parra, Isabella Tamine ; Picinin, Claudia Tania ; Pedroso, Bruno.
    In: SAGE Open.
    RePEc:sae:sagope:v:11:y:2021:i:2:p:21582440211013780.

    Full description at Econpapers || Download paper

  11. Study of the thermal performance of water-soaked porous wall under a tropical climate. (2021). Sudprasert, Sudaporn ; Jaroensen, Pornchai.
    In: International Journal of Low-Carbon Technologies.
    RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1453-1463..

    Full description at Econpapers || Download paper

  12. Evaporative Cooling Integrated with Solid Desiccant Systems: A Review. (2021). Wang, Xiaolin ; Lai, Lanbo ; Kefayati, Gholamreza ; Hu, Eric.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5982-:d:639728.

    Full description at Econpapers || Download paper

  13. Optimal operation of evaporative cooling pads: A review. (2021). Tejero-Gonzalez, A ; Franco-Salas, A.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121009072.

    Full description at Econpapers || Download paper

  14. Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production. (2021). Elsisi, S F ; Omar, M N ; Keshek, M H ; Gomaa, E M ; Taha, A T ; Samak, A A.
    In: Renewable Energy.
    RePEc:eee:renene:v:172:y:2021:i:c:p:1154-1173.

    Full description at Econpapers || Download paper

  15. Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions. (2021). Kota, S V ; Kumar, Shiva ; Salins, Sampath Suranjan ; Nair, Prasanth Sreekumar.
    In: Energy.
    RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013840.

    Full description at Econpapers || Download paper

  16. Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier. (2021). Kota, S V ; Kumar, Shiva ; Salins, Sampath Suranjan.
    In: Applied Energy.
    RePEc:eee:appene:v:293:y:2021:i:c:s0306261921004347.

    Full description at Econpapers || Download paper

  17. Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers. (2020). Nada, S A ; Mahmoud, M A ; Elattar, H F ; Fouda, A.
    In: Energy.
    RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317862.

    Full description at Econpapers || Download paper

  18. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers. (2019). Shao, Shuangquan ; Zhang, Hainan ; Liu, Haichao ; Tian, Changqing.
    In: Energy.
    RePEc:eee:energy:v:185:y:2019:i:c:p:829-836.

    Full description at Econpapers || Download paper

  19. Dynamic operating conditions strategy for water hybrid cooling under variable heating demand. (2019). Junior, Vivaldo Silveira ; Pereira, Jose Luiz ; Melgao, Cintia Carla.
    In: Applied Energy.
    RePEc:eee:appene:v:237:y:2019:i:c:p:635-645.

    Full description at Econpapers || Download paper

  20. Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids. (2018). Zhao, Xudong ; Tariq, Rasikh ; Sheikh, Nadeem Ahmed ; Zhan, Changhong.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2656-:d:173860.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 03:12:09 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.