Abrams, D.M. ; Strogatz, S.H. Modelling the dynamics of language death. 2003 Nature. 424 -
- Aguilar-Canto, F.J. ; Ávila-Vales, E.J. Minett-Wang model of language competition of Yucatec Maya and Spanish in Yucatan Peninsula. 2021 Nova Sci.. 13 -
Paper not yet in RePEc: Add citation now
- Asikis, T. ; Böttcher, L. ; Antulov-Fantulin, N. Neural ordinary differential equation control of dynamics on graphs. 2022 Phys. Rev. Res.. 4 -
Paper not yet in RePEc: Add citation now
- Avila-Vales, E.J. ; Cervantes-Pérez, Á.G. Global stability for SIRS epidemic models with general incidence rate and transfer from infectious to susceptible. 2019 Bol. Soc. Mat. Mex.. 25 637-658
Paper not yet in RePEc: Add citation now
- Biggio, L. ; Bendinelli, T. ; Neitz, A. ; Lucchi, A. ; Parascandolo, G. Neural symbolic regression that scales. 2021 En : International Conference on Machine Learning, PMLR. :
Paper not yet in RePEc: Add citation now
- Blechschmidt, J. ; Ernst, O.G. Three ways to solve partial differential equations with neural networks–a review. 2021 GAMM-Mitt.. 44 -
Paper not yet in RePEc: Add citation now
- Bongard, J. ; Lipson, H. Automated reverse engineering of nonlinear dynamical systems. 2007 Proc. Natl. Acad. Sci.. 104 9943-9948
Paper not yet in RePEc: Add citation now
- Chen, R.T. ; Rubanova, Y. ; Bettencourt, J. ; Duvenaud, D.K. Neural ordinary differential equations. 2018 Adv. Neural Inf. Process. Syst.. 31 -
Paper not yet in RePEc: Add citation now
Chen, Y. ; Yu, H. ; Meng, X. ; Xie, X. ; Hou, M. ; Chevallier, J. Numerical solving of the generalized Black-Scholes differential equation using Laguerre neural network. 2021 Digit. Signal Process.. 112 -
- Cybenko, G. Approximation by superpositions of a sigmoidal function. 1989 Math. Control Signals Syst.. 2 303-314
Paper not yet in RePEc: Add citation now
Daniels, B.C. ; Nemenman, I. Automated adaptive inference of phenomenological dynamical models. 2015 Nat. Commun.. 6 1-8
Daniels, B.C. ; Nemenman, I. Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression. 2015 PLoS ONE. 10 -
- Ezadi, S. ; Parandin, N. An application of neural networks to solve ordinary differential equations. 2013 Int. J. Math. Model. Comput.. 03 245-252
Paper not yet in RePEc: Add citation now
- Gao, H. ; Zahr, M.J. ; Wang, J.-X. Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. 2022 Comput. Methods Appl. Mech. Eng.. 390 -
Paper not yet in RePEc: Add citation now
- Garain, K. ; Kumar, U. ; Mandal, P.S. Global dynamics in a Beddington–DeAngelis Prey–Predator model with density dependent death rate of predator. 2021 Differ. Equ. Dyn. Syst.. 29 265-283
Paper not yet in RePEc: Add citation now
- Gaucel, S. ; Keijzer, M. ; Lutton, E. ; Tonda, A. Learning dynamical systems using standard symbolic regression. 2014 En : European Conference on Genetic Programming. Springer:
Paper not yet in RePEc: Add citation now
- Giannakis, D. ; Majda, A.J. Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. 2012 Proc. Natl. Acad. Sci.. 109 2222-2227
Paper not yet in RePEc: Add citation now
- Glymour, M. ; Pearl, J. ; Jewell, N.P. Causal Inference in Statistics: A Primer. 2016 John Wiley & Sons:
Paper not yet in RePEc: Add citation now
- González-García, R. ; Rico-Martìnez, R. ; Kevrekidis, I.G. Identification of distributed parameter systems: a neural net based approach. 1998 Comput. Chem. Eng.. 22 S965-S968
Paper not yet in RePEc: Add citation now
- González-Garcıa, R. ; Rico-Martınez, R. ; Wolf, W. ; Lübke, M. ; Eiswirth, M. ; Anderson, J.S. ; Kevrekidis, I.G. Characterization of a two-parameter mixed-mode electrochemical behavior regime using neural networks. 2001 Phys. D, Nonlinear Phenom.. 151 27-43
Paper not yet in RePEc: Add citation now
- Hall, E.J. ; Taverniers, S. ; Katsoulakis, M.A. ; Tartakovsky GINNs, D.M. Graph-informed neural networks for multiscale physics. 2021 J. Comput. Phys.. 433 -
Paper not yet in RePEc: Add citation now
- Han, J. ; Zhang, L. ; Weinan, E. Solving many-electron Schrödinger equation using deep neural networks. 2019 J. Comput. Phys.. 399 -
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput.. 9 1735-1780
Paper not yet in RePEc: Add citation now
- Jo, H. ; Son, H. ; Hwang, H.J. ; Jung, S.Y. Analysis of COVID-19 spread in South Korea using the SIR model with time-dependent parameters and deep learning. 2020 :
Paper not yet in RePEc: Add citation now
- Khalid, M. ; Sultana, M. ; Zaidi, F. Numerical solution of sixth-order differential equations arising in astrophysics by neural network. 2014 Int. J. Comput. Appl.. 107 1-6
Paper not yet in RePEc: Add citation now
- Kim, S. ; Lu, P.Y. ; Mukherjee, S. ; Gilbert, M. ; Jing, L. ; Čeperić, V. ; Soljačić, M. Integration of neural network-based symbolic regression in deep learning for scientific discovery. 2020 IEEE Trans. Neural Netw. Learn. Syst.. 32 4166-4177
Paper not yet in RePEc: Add citation now
- Lagaris, I.E. ; Likas, A. ; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. 1998 IEEE Trans. Neural Netw.. 9 987-1000
Paper not yet in RePEc: Add citation now
- Leshno, M. ; Lin, V.Y. ; Pinkus, A. ; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. 1993 Neural Netw.. 6 861-867
Paper not yet in RePEc: Add citation now
- Linka, K. ; Schafer, A. ; Meng, X. ; Zou, Z. ; Karniadakis, G.E. ; Kuhl, E. Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems. 2022 Comput. Methods Appl. Mech. Eng.. -
Paper not yet in RePEc: Add citation now
- Long, Z. ; Lu, Y. ; Dong, B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. 2019 J. Comput. Phys.. 399 -
Paper not yet in RePEc: Add citation now
- Long, Z. ; Lu, Y. ; Ma, X. ; Dong, B. PDE-Net: learning PDEs from data. 2018 En : International Conference on Machine Learning, PMLR. :
Paper not yet in RePEc: Add citation now
- Manzi, M. ; Vasile, M. Discovering unmodeled components in astrodynamics with symbolic regression. 2020 En : 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE:
Paper not yet in RePEc: Add citation now
- Mills, K. ; Spanner, M. ; Tamblyn, I. Deep learning and the Schrödinger equation. 2017 Phys. Rev. A. 96 -
Paper not yet in RePEc: Add citation now
- Minett, J.W. ; Wang, W.S. Modelling endangered languages: the effects of bilingualism and social structure. 2008 Lingua. 118 19-45
Paper not yet in RePEc: Add citation now
Mnih, V. ; Kavukcuoglu, K. ; Silver, D. ; Rusu, A.A. ; Veness, J. ; Bellemare, M.G. ; Graves, A. ; Riedmiller, M. ; Fidjeland, A.K. ; Ostrovski, G. Human-level control through deep reinforcement learning. 2015 Nature. 518 529-533
- Pearl, J. Radical empiricism and machine learning research. 2021 J. Causal Inference. 9 78-82
Paper not yet in RePEc: Add citation now
- Pearl, J. The seven tools of causal inference, with reflections on machine learning. 2019 Commun. ACM. 62 54-60
Paper not yet in RePEc: Add citation now
- Quade, M. ; Abel, M. ; Shafi, K. ; Niven, R.K. ; Noack, B.R. Prediction of dynamical systems by symbolic regression. 2016 Phys. Rev. E. 94 -
Paper not yet in RePEc: Add citation now
- Raissi, M. Deep hidden physics models: deep learning of nonlinear partial differential equations. 2018 J. Mach. Learn. Res.. 19 932-955
Paper not yet in RePEc: Add citation now
- Raissi, M. ; Perdikaris, P. ; Karniadakis, G.E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. 2019 J. Comput. Phys.. 378 686-707
Paper not yet in RePEc: Add citation now
- Rudy, S.H. ; Brunton, S.L. ; Proctor, J.L. ; Kutz, J.N. Data-driven discovery of partial differential equations. 2017 Sci. Adv.. 3 -
Paper not yet in RePEc: Add citation now
- Ruthotto, L. ; Haber, E. Deep neural networks motivated by partial differential equations. 2020 J. Math. Imaging Vis.. 62 352-364
Paper not yet in RePEc: Add citation now
- Schmidt, M. ; Lipson, H. Distilling free-form natural laws from experimental data. 2009 Science. 324 81-85
Paper not yet in RePEc: Add citation now
Seoane, L.F. ; Loredo, X. ; Monteagudo, H. ; Mira, J. Is the coexistence of Catalan and Spanish possible in Catalonia?. 2019 Palgrave Commun.. 5 1-9
- Shukla, K. ; Xu, M. ; Trask, N. ; Karniadakis, G.E. Scalable algorithms for physics-informed neural and graph networks. 2022 Data-Cent. Eng.. 3 -
Paper not yet in RePEc: Add citation now
- Siami-Namini, S. ; Tavakoli, N. ; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. 2018 En : 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE:
Paper not yet in RePEc: Add citation now
- Taverniers, S. ; Hall, E.J. ; Katsoulakis, M.A. ; Tartakovsky, D.M. Graph-informed neural networks. 2021 En : AAAI 2021 Spring Symposium Series: Combining Artificial Intelligence and Machine Learning with Physics Sciences. :
Paper not yet in RePEc: Add citation now
- Udrescu, S.-M. ; Tegmark, M. ; Feynman, A.I. A physics-inspired method for symbolic regression. 2020 Sci. Adv.. 6 -
Paper not yet in RePEc: Add citation now
- Voss, H.U. ; Kolodner, P. ; Abel, M. ; Kurths, J. Amplitude equations from spatiotemporal binary-fluid convection data. 1999 Phys. Rev. Lett.. 83 3422-
Paper not yet in RePEc: Add citation now
- Ye, H. ; Beamish, R.J. ; Glaser, S.M. ; Grant, S.C. ; Hsieh, C.-h. ; Richards, L.J. ; Schnute, J.T. ; Sugihara, G. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. 2015 Proc. Natl. Acad. Sci.. 112 E1569-E1576
Paper not yet in RePEc: Add citation now