Abdollahi, H. A novel hybrid model for forecasting crude oil price based on time series decomposition. 2020 Appl Energy. 267 -
Baek, J. Crude oil prices and macroeconomic activities: a structural VAR approach to Indonesia. 2021 Appl Econ. 53 2527-2538
Bai, Y. ; Li, X. ; Yu, H. ; Jia, S. Crude oil price forecasting incorporating news text. 2022 Int J Forecast. 38 367-383
Bergmeir, C. ; Hyndman, R.J. ; Benítez, J.M. Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. 2016 Int J Forecast. 32 303-312
Cai, C.X. ; Kyaw, K. ; Zhang, Q. Stock index return forecasting: The information of the constituents. 2012 Econom Lett. 116 72-74
- Cai, P. ; Zhang, C. ; Chai, J. Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms. 2023 Data Sci Manage. 6 46-54
Paper not yet in RePEc: Add citation now
- Cheng, Y. ; Yi, J. ; Yang, X. ; Lai, K.K. ; Seco, L. A CEEMD-ARIMA-SVM model with structural breaks to forecast the crude oil prices linked with extreme events. 2022 Soft Comput. 26 8537-8551
Paper not yet in RePEc: Add citation now
Demir, S. ; Stappers, B. ; Kok, K. ; Paterakis, N.G. Statistical arbitrage trading on the intraday market using the asynchronous advantage actor-critic method. 2022 Appl Energy. 314 -
- Deng, S. ; Zhu, Y. ; Duan, S. ; Yu, Y. ; Fu, Z. ; Liu, J. ; Yang, X. ; Liu, Z. High-frequency forecasting of the crude oil futures price with multiple timeframe predictions fusion. 2023 Expert Syst Appl. 217 -
Paper not yet in RePEc: Add citation now
Ding, L. ; Zhao, Z. ; Wang, L. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. 2022 Appl Energy. 312 -
- Drachal, K. Forecasting crude oil real prices with averaging time-varying VAR models. 2021 Resour Policy. 74 -
Paper not yet in RePEc: Add citation now
- Fang, Y. ; Wang, W. ; Wu, P. ; Zhao, Y. A sentiment-enhanced hybrid model for crude oil price forecasting. 2022 Expert Syst Appl. 215 -
Paper not yet in RePEc: Add citation now
Gkillas, K. ; Manickavasagam, J. ; Visalakshmi, S. Effects of fundamentals, geopolitical risk and expectations factors on crude oil prices. 2022 Resour Policy. 78 -
Gong, M. ; Zhao, Y. ; Sun, J. ; Han, C. ; Sun, G. ; Yan, B. Load forecasting of district heating system based on informer. 2022 Energy. 253 -
Herrera, G.P. ; Constantino, M. ; Su, J.-J. ; Naranpanawa, A. Renewable energy stocks forecast using Twitter investor sentiment and deep learning. 2022 Energy Econ. 114 -
- Hu, Z. Crude oil price prediction using CEEMDAN and LSTM-attention with news sentiment index. 2021 Oil Gas Sci Technol - Rev d’IFP Energies Nouvelles. 76 28-
Paper not yet in RePEc: Add citation now
- Hutto CJ, Gilbert E. VADER: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th international conference on weblogs and social media, ICWSM 2014. ISBN: 9781577356578, 2014, p. 216–25.
Paper not yet in RePEc: Add citation now
Jia, Z. ; Wen, S. ; Lin, B. The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China. 2021 Appl Energy. 302 -
- Jiang, H. ; Hu, W. ; Xiao, L. ; Dong, Y. A decomposition ensemble based deep learning approach for crude oil price forecasting. 2022 Resour Policy. 78 -
Paper not yet in RePEc: Add citation now
Lang, Q. ; Lu, X. ; Ma, F. ; Huang, D. Oil futures volatility predictability: Evidence based on Twitter-based uncertainty. 2022 Finance Res Lett. 47 -
Li, M. ; Cheng, Z. ; Lin, W. ; Wei, Y. ; Wang, S. What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting. 2023 Energy Econ. 123 -
- Li, Z. ; Huang, Z. ; Failler, P. Dynamic correlation between crude oil price and investor sentiment in China: Heterogeneous and asymmetric effect. 2022 Energies. 15 687-
Paper not yet in RePEc: Add citation now
- Lin, Y. ; Chen, K. ; Zhang, X. ; Tan, B. ; Lu, Q. Forecasting crude oil futures prices using BiLSTM-Attention-CNN model with wavelet transform. 2022 Appl Soft Comput. 130 -
Paper not yet in RePEc: Add citation now
Lu, Q. ; Li, Y. ; Chai, J. ; Wang, S. Crude oil price analysis and forecasting: A perspective of “new triangle”. 2020 Energy Econ. 87 -
- Maté, C. ; Jimeńez, L. Forecasting exchange rates with the iMLP: New empirical insight on one multi-layer perceptron for interval time series (ITS). 2021 Eng Appl Artif Intell. 104 -
Paper not yet in RePEc: Add citation now
- Ning, Y. ; Kazemi, H. ; Tahmasebi, P. A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. 2022 Comput Geosci. 164 -
Paper not yet in RePEc: Add citation now
Ogbuabor, J.E. ; Ukwueze, E.R. ; Mba, I.C. ; Ojonta, O.I. ; Orji, A. The asymmetric impact of economic policy uncertainty on global retail energy markets: Are the markets responding to the fear of the unknown?. 2023 Appl Energy. 334 -
Ramyar, S. ; Kianfar, F. Forecasting crude oil prices: A comparison between artificial neural networks and vector autoregressive models. 2019 Comput Econ. 53 743-761
- Roque, A.M. ; Maté, C. ; Arroyo, J. ; Sarabia, Á. IMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data. 2007 Neural Process Lett. 25 157-169
Paper not yet in RePEc: Add citation now
Shahzad, S.J.H. ; Kyei, C.K. ; Gupta, R. ; Olson, E. Investor sentiment and dollar-pound exchange rate returns: Evidence from over a century of data using a cross-quantilogram approach. 2021 Finance Res Lett. 38 -
Sharma, S. ; Sud, M. Impact of regulatory framework on bidding behavior of firms: Policy implications for the oil & gas sector. 2019 Energy Policy. 131 33-42
Singh, V.K. Day-of-the-week effect of major currency pairs: new evidences from investors’ fear gauge. 2019 J Asset Manage. 20 493-507
- Sohrabi, P. ; Dehghani, H. ; Rafie, R. Forecasting of WTI crude oil using combined ANN-Whale optimization algorithm. 2022 Energy Sources B. 17 -
Paper not yet in RePEc: Add citation now
- Su, M. ; Liu, H. ; Yu, C. ; Duan, Z. A new crude oil futures forecasting method based on fusing quadratic forecasting with residual forecasting. 2022 Digit Signal Process. 130 -
Paper not yet in RePEc: Add citation now
Sun, S. ; Sun, Y. ; Wang, S. ; Wei, Y. Interval decomposition ensemble approach for crude oil price forecasting. 2018 Energy Econ. 76 274-287
Sun, Y. ; Zhang, X. ; Hong, Y. ; Wang, S. Asymmetric pass-through of oil prices to gasoline prices with interval time series modelling. 2019 Energy Econ. 78 165-173
Tiwari, A.K. ; Mishra, B.R. ; Solarin, S.A. Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA. 2021 Energy. 220 -
Wang, L. ; Ruan, H. ; Hong, Y. ; Luo, K. Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method. 2023 Res Int Bus Finance. 64 -
Wang, X. ; Li, X. ; Li, S. Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm. 2022 Appl Energy. 328 -
- Wei, Y. ; Wang, S. ; Lai, K.K. Renminbi Exchange Rate Forecasting. 2021 Routledge:
Paper not yet in RePEc: Add citation now
Weng, F. ; Zhang, H. ; Yang, C. Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic. 2021 Resour Policy. 73 -
Wu, J. ; Chen, Y. ; Zhou, T. ; Li, T. An adaptive hybrid learning paradigm integrating CEEMD, ARIMA and SBL for crude oil price forecasting. 2019 Energies. 12 1239-
- Xu, G. ; Yu, Z. ; Yao, H. ; Li, F. ; Meng, Y. ; Wu, X. Chinese text sentiment analysis based on extended sentiment dictionary. 2019 IEEE Access. 7 43749-43762
Paper not yet in RePEc: Add citation now
- Yuan, J. ; Li, J. ; Hao, J. A dynamic clustering ensemble learning approach for crude oil price forecasting. 2023 Eng Appl Artif Intell. 123 -
Paper not yet in RePEc: Add citation now
- Yuen, K.F. ; Ong, K.W. ; Zhou, Y. ; Wang, X. Social media engagement of stakeholders in the oil and gas sector: Social presence, triple bottom line and source credibility theory. 2023 J Clean Prod. 382 -
Paper not yet in RePEc: Add citation now
- Zaidi, A. ; Oussalah, M. Forecasting weekly crude oil using Twitter sentiment of US foreign policy and oil companies data. 2018 En : 2018 IEEE international conference on information reuse and integration (IRI). IEEE Comp Soc; Soc Information Reuse & Integration:
Paper not yet in RePEc: Add citation now
Zhang, H. ; Hong, H. ; Guo, Y. ; Yang, C. Information spillover effects from media coverage to the crude oil, gold, and Bitcoin markets during the COVID-19 pandemic: Evidence from the time and frequency domains. 2022 Int Rev Econ Finance. 78 267-285
Zhang, W. ; Gong, X. ; Wang, C. ; Ye, X. Predicting stock market volatility based on textual sentiment: A nonlinear analysis. 2021 J Forecast. 40 1479-1500
- Zhang, Y. ; Wahab, M.I.M. ; Wang, Y. Forecasting crude oil market volatility using variable selection and common factor. 2023 Int J Forecast. 39 486-502
Paper not yet in RePEc: Add citation now
Zhang, Y.-J. ; Wang, Z.-Y. Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence. 2013 Appl Energy. 104 220-228
Zhao, Y. ; Zhang, W. ; Gong, X. ; Wang, C. A novel method for online real-time forecasting of crude oil price. 2021 Appl Energy. 303 -
- Zhou, H. ; Zhang, S. ; Peng, J. ; Zhang, S. ; Li, J. ; Xiong, H. ; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. 2021 En : Proceedings of the AAAI conference on artificial intelligence, Vol. 35. Association for the Advancement of Artificial Intelligence:
Paper not yet in RePEc: Add citation now