create a website

Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy. (2024). Cheng, Zishu ; Wei, Yunjie ; Wang, Shouyang ; Li, Mingchen ; Yang, Kun.
In: Applied Energy.
RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014666.

Full description at Econpapers || Download paper

Cited: 6

Citations received by this document

Cites: 52

References cited by this document

Cocites: 34

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data. (2025). Tang, Zhenpeng ; Lin, Shuo ; Wang, Liuqing ; Liu, Dinggao.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:3:p:455-:d:1579981.

    Full description at Econpapers || Download paper

  2. News sentiment, climate conditions, and New Zealand electricity market: A real-time bidding policy perspective. (2025). Sbai, Erwann ; Tao, Miaomiao ; Sheng, Mingyue Selena ; Wang, Guanghao.
    In: Energy.
    RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004268.

    Full description at Econpapers || Download paper

  3. From forecasting to trading: A multimodal-data-driven approach to reversing carbon market losses. (2025). Liu, Shuihan ; Yang, Kun ; Wei, Yunjie ; Wang, Shouyang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001744.

    Full description at Econpapers || Download paper

  4. Forecasting the carbon price of Chinas national carbon market: A novel dynamic interval-valued framework. (2025). Wei, Yunjie ; Wang, Zhengzhong.
    In: Energy Economics.
    RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008168.

    Full description at Econpapers || Download paper

  5. A robust time-varying weight combined model for crude oil price forecasting. (2024). Xu, Yan ; Zhou, Suyu ; Jie, Qian ; Du, Pei ; Liu, Longlong ; Wang, Jianzhou.
    In: Energy.
    RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011253.

    Full description at Econpapers || Download paper

  6. A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information. (2024). Tao, Zhifu ; Luo, Rui ; Zhao, Xiaoman ; Liu, Jinpei.
    In: Applied Energy.
    RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016441.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdollahi, H. A novel hybrid model for forecasting crude oil price based on time series decomposition. 2020 Appl Energy. 267 -

  2. Baek, J. Crude oil prices and macroeconomic activities: a structural VAR approach to Indonesia. 2021 Appl Econ. 53 2527-2538

  3. Bai, Y. ; Li, X. ; Yu, H. ; Jia, S. Crude oil price forecasting incorporating news text. 2022 Int J Forecast. 38 367-383

  4. Bergmeir, C. ; Hyndman, R.J. ; Benítez, J.M. Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. 2016 Int J Forecast. 32 303-312

  5. Cai, C.X. ; Kyaw, K. ; Zhang, Q. Stock index return forecasting: The information of the constituents. 2012 Econom Lett. 116 72-74

  6. Cai, P. ; Zhang, C. ; Chai, J. Forecasting hourly PM2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms. 2023 Data Sci Manage. 6 46-54
    Paper not yet in RePEc: Add citation now
  7. Cheng, Y. ; Yi, J. ; Yang, X. ; Lai, K.K. ; Seco, L. A CEEMD-ARIMA-SVM model with structural breaks to forecast the crude oil prices linked with extreme events. 2022 Soft Comput. 26 8537-8551
    Paper not yet in RePEc: Add citation now
  8. Demir, S. ; Stappers, B. ; Kok, K. ; Paterakis, N.G. Statistical arbitrage trading on the intraday market using the asynchronous advantage actor-critic method. 2022 Appl Energy. 314 -

  9. Deng, S. ; Zhu, Y. ; Duan, S. ; Yu, Y. ; Fu, Z. ; Liu, J. ; Yang, X. ; Liu, Z. High-frequency forecasting of the crude oil futures price with multiple timeframe predictions fusion. 2023 Expert Syst Appl. 217 -
    Paper not yet in RePEc: Add citation now
  10. Ding, L. ; Zhao, Z. ; Wang, L. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. 2022 Appl Energy. 312 -

  11. Drachal, K. Forecasting crude oil real prices with averaging time-varying VAR models. 2021 Resour Policy. 74 -
    Paper not yet in RePEc: Add citation now
  12. Fang, Y. ; Wang, W. ; Wu, P. ; Zhao, Y. A sentiment-enhanced hybrid model for crude oil price forecasting. 2022 Expert Syst Appl. 215 -
    Paper not yet in RePEc: Add citation now
  13. Gkillas, K. ; Manickavasagam, J. ; Visalakshmi, S. Effects of fundamentals, geopolitical risk and expectations factors on crude oil prices. 2022 Resour Policy. 78 -

  14. Gong, M. ; Zhao, Y. ; Sun, J. ; Han, C. ; Sun, G. ; Yan, B. Load forecasting of district heating system based on informer. 2022 Energy. 253 -

  15. Herrera, G.P. ; Constantino, M. ; Su, J.-J. ; Naranpanawa, A. Renewable energy stocks forecast using Twitter investor sentiment and deep learning. 2022 Energy Econ. 114 -

  16. Hu, Z. Crude oil price prediction using CEEMDAN and LSTM-attention with news sentiment index. 2021 Oil Gas Sci Technol - Rev d’IFP Energies Nouvelles. 76 28-
    Paper not yet in RePEc: Add citation now
  17. Hutto CJ, Gilbert E. VADER: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th international conference on weblogs and social media, ICWSM 2014. ISBN: 9781577356578, 2014, p. 216–25.
    Paper not yet in RePEc: Add citation now
  18. Jia, Z. ; Wen, S. ; Lin, B. The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China. 2021 Appl Energy. 302 -

  19. Jiang, H. ; Hu, W. ; Xiao, L. ; Dong, Y. A decomposition ensemble based deep learning approach for crude oil price forecasting. 2022 Resour Policy. 78 -
    Paper not yet in RePEc: Add citation now
  20. Lang, Q. ; Lu, X. ; Ma, F. ; Huang, D. Oil futures volatility predictability: Evidence based on Twitter-based uncertainty. 2022 Finance Res Lett. 47 -

  21. Li, M. ; Cheng, Z. ; Lin, W. ; Wei, Y. ; Wang, S. What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting. 2023 Energy Econ. 123 -

  22. Li, Z. ; Huang, Z. ; Failler, P. Dynamic correlation between crude oil price and investor sentiment in China: Heterogeneous and asymmetric effect. 2022 Energies. 15 687-
    Paper not yet in RePEc: Add citation now
  23. Lin, Y. ; Chen, K. ; Zhang, X. ; Tan, B. ; Lu, Q. Forecasting crude oil futures prices using BiLSTM-Attention-CNN model with wavelet transform. 2022 Appl Soft Comput. 130 -
    Paper not yet in RePEc: Add citation now
  24. Lu, Q. ; Li, Y. ; Chai, J. ; Wang, S. Crude oil price analysis and forecasting: A perspective of “new triangle”. 2020 Energy Econ. 87 -

  25. Maté, C. ; Jimeńez, L. Forecasting exchange rates with the iMLP: New empirical insight on one multi-layer perceptron for interval time series (ITS). 2021 Eng Appl Artif Intell. 104 -
    Paper not yet in RePEc: Add citation now
  26. Ning, Y. ; Kazemi, H. ; Tahmasebi, P. A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. 2022 Comput Geosci. 164 -
    Paper not yet in RePEc: Add citation now
  27. Ogbuabor, J.E. ; Ukwueze, E.R. ; Mba, I.C. ; Ojonta, O.I. ; Orji, A. The asymmetric impact of economic policy uncertainty on global retail energy markets: Are the markets responding to the fear of the unknown?. 2023 Appl Energy. 334 -

  28. Ramyar, S. ; Kianfar, F. Forecasting crude oil prices: A comparison between artificial neural networks and vector autoregressive models. 2019 Comput Econ. 53 743-761

  29. Roque, A.M. ; Maté, C. ; Arroyo, J. ; Sarabia, Á. IMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data. 2007 Neural Process Lett. 25 157-169
    Paper not yet in RePEc: Add citation now
  30. Shahzad, S.J.H. ; Kyei, C.K. ; Gupta, R. ; Olson, E. Investor sentiment and dollar-pound exchange rate returns: Evidence from over a century of data using a cross-quantilogram approach. 2021 Finance Res Lett. 38 -

  31. Sharma, S. ; Sud, M. Impact of regulatory framework on bidding behavior of firms: Policy implications for the oil & gas sector. 2019 Energy Policy. 131 33-42

  32. Singh, V.K. Day-of-the-week effect of major currency pairs: new evidences from investors’ fear gauge. 2019 J Asset Manage. 20 493-507

  33. Sohrabi, P. ; Dehghani, H. ; Rafie, R. Forecasting of WTI crude oil using combined ANN-Whale optimization algorithm. 2022 Energy Sources B. 17 -
    Paper not yet in RePEc: Add citation now
  34. Su, M. ; Liu, H. ; Yu, C. ; Duan, Z. A new crude oil futures forecasting method based on fusing quadratic forecasting with residual forecasting. 2022 Digit Signal Process. 130 -
    Paper not yet in RePEc: Add citation now
  35. Sun, S. ; Sun, Y. ; Wang, S. ; Wei, Y. Interval decomposition ensemble approach for crude oil price forecasting. 2018 Energy Econ. 76 274-287

  36. Sun, Y. ; Zhang, X. ; Hong, Y. ; Wang, S. Asymmetric pass-through of oil prices to gasoline prices with interval time series modelling. 2019 Energy Econ. 78 165-173

  37. Tiwari, A.K. ; Mishra, B.R. ; Solarin, S.A. Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA. 2021 Energy. 220 -

  38. Wang, L. ; Ruan, H. ; Hong, Y. ; Luo, K. Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method. 2023 Res Int Bus Finance. 64 -

  39. Wang, X. ; Li, X. ; Li, S. Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm. 2022 Appl Energy. 328 -

  40. Wei, Y. ; Wang, S. ; Lai, K.K. Renminbi Exchange Rate Forecasting. 2021 Routledge:
    Paper not yet in RePEc: Add citation now
  41. Weng, F. ; Zhang, H. ; Yang, C. Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic. 2021 Resour Policy. 73 -

  42. Wu, J. ; Chen, Y. ; Zhou, T. ; Li, T. An adaptive hybrid learning paradigm integrating CEEMD, ARIMA and SBL for crude oil price forecasting. 2019 Energies. 12 1239-

  43. Xu, G. ; Yu, Z. ; Yao, H. ; Li, F. ; Meng, Y. ; Wu, X. Chinese text sentiment analysis based on extended sentiment dictionary. 2019 IEEE Access. 7 43749-43762
    Paper not yet in RePEc: Add citation now
  44. Yuan, J. ; Li, J. ; Hao, J. A dynamic clustering ensemble learning approach for crude oil price forecasting. 2023 Eng Appl Artif Intell. 123 -
    Paper not yet in RePEc: Add citation now
  45. Yuen, K.F. ; Ong, K.W. ; Zhou, Y. ; Wang, X. Social media engagement of stakeholders in the oil and gas sector: Social presence, triple bottom line and source credibility theory. 2023 J Clean Prod. 382 -
    Paper not yet in RePEc: Add citation now
  46. Zaidi, A. ; Oussalah, M. Forecasting weekly crude oil using Twitter sentiment of US foreign policy and oil companies data. 2018 En : 2018 IEEE international conference on information reuse and integration (IRI). IEEE Comp Soc; Soc Information Reuse & Integration:
    Paper not yet in RePEc: Add citation now
  47. Zhang, H. ; Hong, H. ; Guo, Y. ; Yang, C. Information spillover effects from media coverage to the crude oil, gold, and Bitcoin markets during the COVID-19 pandemic: Evidence from the time and frequency domains. 2022 Int Rev Econ Finance. 78 267-285

  48. Zhang, W. ; Gong, X. ; Wang, C. ; Ye, X. Predicting stock market volatility based on textual sentiment: A nonlinear analysis. 2021 J Forecast. 40 1479-1500

  49. Zhang, Y. ; Wahab, M.I.M. ; Wang, Y. Forecasting crude oil market volatility using variable selection and common factor. 2023 Int J Forecast. 39 486-502
    Paper not yet in RePEc: Add citation now
  50. Zhang, Y.-J. ; Wang, Z.-Y. Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence. 2013 Appl Energy. 104 220-228

  51. Zhao, Y. ; Zhang, W. ; Gong, X. ; Wang, C. A novel method for online real-time forecasting of crude oil price. 2021 Appl Energy. 303 -

  52. Zhou, H. ; Zhang, S. ; Peng, J. ; Zhang, S. ; Li, J. ; Xiong, H. ; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. 2021 En : Proceedings of the AAAI conference on artificial intelligence, Vol. 35. Association for the Advancement of Artificial Intelligence:
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting crude oil prices: A Gated Recurrent Unit-based nonlinear Granger Causality model. (2025). Zhang, Dayong ; Lu, Quanying ; Guo, Mengzhuo ; Lin, Qingyuan ; Liang, Qian.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:102:y:2025:i:c:s105752192500211x.

    Full description at Econpapers || Download paper

  2. A hybrid model based on iTransformer for risk warning of crude oil price fluctuations. (2025). Guo, Yuwei ; Li, Jinchao.
    In: Energy.
    RePEc:eee:energy:v:314:y:2025:i:c:s036054422403977x.

    Full description at Econpapers || Download paper

  3. Predicting carbon and oil price returns using hybrid models based on machine and deep learning. (2024). Perote, Javier ; Molinamuoz, Jesus ; Moravalencia, Andres.
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:31:y:2024:i:2:n:e1563.

    Full description at Econpapers || Download paper

  4. Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model. (2024). Patil, Renuka ; Swasthika, T J ; Chaithanya, B N ; Chellin, George J ; Ruby, Usha A.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10460-w.

    Full description at Econpapers || Download paper

  5. Oil market regulatory: An ensembled model for prediction. (2024). Liu, Yancheng ; Gu, Xiang ; Fan, Kun ; Chen, Haixin.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324008195.

    Full description at Econpapers || Download paper

  6. A robust time-varying weight combined model for crude oil price forecasting. (2024). Xu, Yan ; Zhou, Suyu ; Jie, Qian ; Du, Pei ; Liu, Longlong ; Wang, Jianzhou.
    In: Energy.
    RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011253.

    Full description at Econpapers || Download paper

  7. A novel secondary decomposition method for forecasting crude oil price with twitter sentiment. (2024). Guo, Yuanxuan ; Qian, Shuangyue ; Tang, Ling ; Li, Ling ; Wu, Jun.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223033480.

    Full description at Econpapers || Download paper

  8. A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting. (2024). Zhao, Zhengling ; Wang, Shouyang ; Sun, Shaolong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031341.

    Full description at Econpapers || Download paper

  9. Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries. (2024). Ma, Xin ; An, Hongyu.
    In: Applied Energy.
    RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002071.

    Full description at Econpapers || Download paper

  10. Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy. (2024). Cheng, Zishu ; Wei, Yunjie ; Wang, Shouyang ; Li, Mingchen ; Yang, Kun.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014666.

    Full description at Econpapers || Download paper

  11. An equilibrium analysis of the impact of real estate price volatility on macroeconomics based on ant colony algorithm. (2023). Jie, Zhou ; Qi, Chai Hua.
    In: Journal of Combinatorial Optimization.
    RePEc:spr:jcomop:v:45:y:2023:i:2:d:10.1007_s10878-023-00995-x.

    Full description at Econpapers || Download paper

  12. An analysis of crude oil prices in the last decade (2011-2020): With deep learning approach. (2023). Choudhury, Karabi Dutta ; Datta, Tapan Kumar ; Sen, Abhibasu.
    In: PLOS ONE.
    RePEc:plo:pone00:0268996.

    Full description at Econpapers || Download paper

  13. Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling. (2023). Zaghdoudi, Taha ; Nsaibi, Mariem ; Tissaoui, Kais ; Hakimi, Abdelaziz.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:2:d:10.1007_s10614-022-10305-y.

    Full description at Econpapers || Download paper

  14. A Supply Chain-Oriented Model to Predict Crude Oil Import Prices in South Korea Based on the Hybrid Approach. (2023). Kim, Umji ; Lee, Juhyang ; Jo, Jisung.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:24:p:16725-:d:1297795.

    Full description at Econpapers || Download paper

  15. A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network. (2023). Xue, Minggao ; Cheng, LI ; Zhao, Geya.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006670.

    Full description at Econpapers || Download paper

  16. Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?. (2023). Wang, Weiqing ; Xu, Kunliang.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:87:y:2023:i:c:s1057521923001412.

    Full description at Econpapers || Download paper

  17. Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?. (2023). Xu, Kunliang ; Niu, Hongli.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006278.

    Full description at Econpapers || Download paper

  18. Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine. (2022). Kumar, Sachin ; Mallick, Pradeep Kumar ; Zymbler, Mikhail ; Das, Kaberi ; El-Sayed, Hesham ; Mishra, Debahuti.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:7:p:1121-:d:784338.

    Full description at Econpapers || Download paper

  19. Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?. (2022). Xu, Kunliang ; Niu, Hongli.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522004887.

    Full description at Econpapers || Download paper

  20. A dynamic ensemble learning with multi-objective optimization for oil prices prediction. (2022). Sun, Xiaolei ; Feng, Qianqian ; Hao, Jun ; Yuan, Jiaxin ; Li, Jianping.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004007.

    Full description at Econpapers || Download paper

  21. Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm. (2022). Hao, Yan ; Wang, Jianzhou ; Wu, Chunying.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002288.

    Full description at Econpapers || Download paper

  22. A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting. (2022). Sun, Shaolong ; Zhao, Panpan.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002100.

    Full description at Econpapers || Download paper

  23. Forecasting crude oil market returns: Enhanced moving average technical indicators. (2022). Zhang, Yaojie ; Wang, Yudong ; Liu, LI ; Wen, Danyan.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:76:y:2022:i:c:s0301420722000216.

    Full description at Econpapers || Download paper

  24. A novel crude oil prices forecasting model based on secondary decomposition. (2022). Yin, Shibo ; Yang, Hong ; Li, Guohui.
    In: Energy.
    RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015870.

    Full description at Econpapers || Download paper

  25. A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features. (2022). Li, Xiuming ; Sun, Mei ; Mensah, Isaac Adjei ; He, Huizi.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029558.

    Full description at Econpapers || Download paper

  26. Oil price, US stock market and the US business conditions in the era of COVID-19 pandemic outbreak. (2022). Managi, Shunsuke ; ben Zaied, Younes ; ben Mabrouk, Nejah ; Yousfi, Mohamed ; ben Lahouel, Bechir.
    In: Economic Analysis and Policy.
    RePEc:eee:ecanpo:v:73:y:2022:i:c:p:129-139.

    Full description at Econpapers || Download paper

  27. Robust Multi-Step Predictor for Electricity Markets with Real-Time Pricing. (2021). Vyatkin, Valeriy ; Sierla, Seppo ; Kahawala, Sachin ; Nawaratne, Rashmika ; Osipov, Evgeny ; de Silva, Daswin ; Alahakoon, Damminda ; Jennings, Andrew.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4378-:d:597954.

    Full description at Econpapers || Download paper

  28. Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation. (2021). Ivanyuk, Vera.
    In: Economies.
    RePEc:gam:jecomi:v:9:y:2021:i:3:p:95-:d:580663.

    Full description at Econpapers || Download paper

  29. Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm. (2021). Liu, Zhenkun ; Jiang, Ping ; Zhang, Lifang ; Wang, Jianzhou.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002452.

    Full description at Econpapers || Download paper

  30. Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns. (2021). Ali, Aliyuda.
    In: Energy.
    RePEc:eee:energy:v:229:y:2021:i:c:s0360544221008975.

    Full description at Econpapers || Download paper

  31. Neural network prediction of crude oil futures using B-splines. (2021). Shang, Han Lin ; Butler, Sunil ; Kokoszka, Piotr ; Miao, Hong.
    In: Energy Economics.
    RePEc:eee:eneeco:v:94:y:2021:i:c:s0140988320304205.

    Full description at Econpapers || Download paper

  32. A novel method for online real-time forecasting of crude oil price. (2021). Zhao, Yuan ; Gong, Xue ; Zhang, Weiguo ; Wang, Chao.
    In: Applied Energy.
    RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009648.

    Full description at Econpapers || Download paper

  33. Predicting risk in energy markets: Low-frequency data still matter. (2021). Výrost, Tomáš ; Lyócsa, Štefan ; Vrost, Toma ; Lyocsa, Tefan ; Todorova, Neda.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315567.

    Full description at Econpapers || Download paper

  34. Forecasting Crude Oil Price Using Event Extraction. (2021). Huang, Xiaohong ; Liu, Jiangwei.
    In: Papers.
    RePEc:arx:papers:2111.09111.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-02 00:48:40 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.