Acikgoz, H. ; Budak, U. ; Korkmaz, D. ; Yildiz, C. WSFNet: an efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network. 2021 Energy. 233 -
- Aliakbari, M. ; Mahmoudi, M. ; Vadasz, P. ; Arzani, A. Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks. 2022 Int J Heat Fluid Flow. 96 -
Paper not yet in RePEc: Add citation now
Antonini, E.G.A. ; Romero, D.A. ; Amon, C.H. Improving CFD wind farm simulations incorporating wind direction uncertainty. 2019 Renew Energy. 133 1011-1023
- Baldan, M. ; Di Barba, P. ; Lowther, D.A. Physics-informed neural networks for inverse electromagnetic problems. 2023 IEEE Trans Magn. 59 1-5
Paper not yet in RePEc: Add citation now
- Bartl, J. ; Mühle, F. ; Schottler, J. ; Sætran, L. ; Peink, J. ; Adaramola, M. Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear. 2018 Wind Energy Sci. 3 329-343
Paper not yet in RePEc: Add citation now
- Baydin, A.G. ; Pearlmutter, B.A. ; Radul, A.A. ; Siskind, J.M. Automatic differentiation in machine learning: a survey. 2018 J Mach Learn Res. 18 1-43
Paper not yet in RePEc: Add citation now
- Bengio, Y. ; Simard, P. ; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. 1994 IEEE Trans Neural Netw Learn Syst. 5 157-166
Paper not yet in RePEc: Add citation now
- Borraccino, A. ; Schlipf, D. ; Haizmann, F. ; Wagner, R. Wind field reconstruction from nacelle-mounted lidar short-range measurements. 2017 Wind Energy Sci. 2 269-283
Paper not yet in RePEc: Add citation now
- Cai, S. ; Mao, Z. ; Wang, Z. Physics-informed neural networks (PINNs) for fluid mechanics: a review. 2021 Acta Mech Sin. 37 1727-1738
Paper not yet in RePEc: Add citation now
- Carcangiu, C.E. ; Pujana-Arrese, A. ; Mendizabal, A. ; Pinede, I. ; Landaluze, J. Wind gust detection and load mitigation using artificial neural networks assisted control. 2014 Wind Energy. 17 957-970
Paper not yet in RePEc: Add citation now
- Cheng, C. ; Zhang, G.T. Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. 2021 Water. 13 423-
Paper not yet in RePEc: Add citation now
- Dolatabadi, A. ; Abdeltawab, H. ; Mohamed, Y.A.R.I. Deep spatial-temporal 2-D CNN-BLSTM model for ultrashort-term LiDAR-assisted wind turbine’s power and fatigue load forecasting. 2021 IEEE Trans on Industr Inform. 18 2342-2353
Paper not yet in RePEc: Add citation now
Fleming, P.A. ; Gebraad, P.M.O. ; Lee, S. ; van Wingerden, J.W. ; Johnson, K. ; Churchfield, M. Evaluating techniques for redirecting turbine wakes using SOWFA. 2014 Renew Energy. 70 211-218
- Glorot, X. ; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. 2010 En : Proceedings of the thirteenth international conference on artificial intelligence and statistics. :
Paper not yet in RePEc: Add citation now
- Harris, M. ; Hand, M. ; Wright, A. Lidar for turbine control. Report no. NREL/TP-500-39154. 2016 Golden, CO: National Renewable Energy Laboratory
Paper not yet in RePEc: Add citation now
- Hayou, S. ; Clerico, E. ; He, B. ; Deligiannidis, G. ; Doucet, A. ; Rousseau, J. Stable resnet. 2021 En : International conference on artificial intelligence and statistics. PMLR:
Paper not yet in RePEc: Add citation now
- He, K. ; Zhang, X. ; Ren, S. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 2015 En : Proceedings of the IEEE international conference on computer vision. IEEE:
Paper not yet in RePEc: Add citation now
- He, K. ; Zhang, X. ; Ren, S. ; Sun, J. Deep residual learning for image recognition. 2016 En : Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE:
Paper not yet in RePEc: Add citation now
- He, K. ; Zhang, X. ; Ren, S. ; Sun, J. Identity mappings in deep residual networks. 2016 En : European conference on computer vision. Springer:
Paper not yet in RePEc: Add citation now
He, R. ; Yang, H. ; Sun, S. A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control. 2022 Appl Energy. 326 -
- Huang, B. ; Wang, J. Applications of physics-informed neural networks in power systems-a review. 2022 IEEE Trans Power Syst. 38 572-588
Paper not yet in RePEc: Add citation now
- Jagtap, A.D. ; Kawaguchi, K. ; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. 2020 J Comput Phys. 404 -
Paper not yet in RePEc: Add citation now
- Jin, X. ; Cai, S. ; Li, H. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-stokes equations. 2021 J Comput Phys. 426 -
Paper not yet in RePEc: Add citation now
- Khan, A. ; Lowther, D.A. Physics informed neural networks for electromagnetic analysis. 2022 IEEE Trans Magn. 58 1-4
Paper not yet in RePEc: Add citation now
- Li, J. ; Yu, X.B. LiDAR technology for wind energy potential assessment: demonstration and validation at a site around Lake Erie. 2017 Energ Conver Manage. 144 252-261
Paper not yet in RePEc: Add citation now
- Li, R. ; Zhang, J. ; Zhao, X. Multi-fidelity modeling of wind farm wakes based on a novel super-fidelity network. 2022 Energ Conver Manage. 270 -
Paper not yet in RePEc: Add citation now
- Liu, Z. A review of progress and applications of pulsed Doppler wind LiDARs. 2019 Remote Sens (Basel). 11 2522-
Paper not yet in RePEc: Add citation now
- Mahdizadeh, A. ; Schmid, R. ; Oetomo, D. Lidar-assisted exact output regulation for load mitigation in wind turbines. 2020 IEEE Trans Control Syst Technol. 29 1102-1116
Paper not yet in RePEc: Add citation now
- Mao, Z. ; Jagtap, A.D. ; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. 2020 Comput Methods Appl Mech Eng. 360 -
Paper not yet in RePEc: Add citation now
- Mehta, D. ; Van Zuijlen, A.H. ; Koren, B. ; Holierhoek, J.G. ; Bijl, H. Large Eddy simulation of wind farm aerodynamics: a review. 2014 J Wind Eng Ind Aerodyn. 133 1-17
Paper not yet in RePEc: Add citation now
- Mercieca, J. ; Aram, P. ; Jones, B.L. ; Kadirkamanathan, V. A spatiotemporal estimation framework for real-world lidar wind speed measurements. 2019 IEEE Trans Control Syst Technol. 28 1595-1602
Paper not yet in RePEc: Add citation now
- Mohammadian, M. ; Baker, K. ; Fioretto, F. Gradient-enhanced physics-informed neural networks for power systems operational support. 2023 Electr Pow Syst Res. 223 -
Paper not yet in RePEc: Add citation now
- Nazari, L.F. ; Camponogara, E. ; Seman, L.O. Physics-informed neural networks for modeling water flows in a river channel. 2022 IEEE Trans Artif Intell. -
Paper not yet in RePEc: Add citation now
- Raissi, M. ; Perdikaris, P. ; Karniadakis, G.E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. 2019 J Comput Phys. 378 686-707
Paper not yet in RePEc: Add citation now
- Roy, S.K. ; Manna, S. ; Song, T. ; Bruzzone, L. Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification. 2020 IEEE Trans Geosci Remote Sens. 59 7831-7843
Paper not yet in RePEc: Add citation now
- Santoni, C. ; Ciri, U. ; Rotea, M. ; Leonardi, S. Development of a high fidelity CFD code for wind farm control. 2015 En : 2015 American control conference. IEEE:
Paper not yet in RePEc: Add citation now
- Sharma, P.K. ; Warudkar, V. ; Ahmed, S. Application of lidar and measure correlate predict method in offshore wind resource assessments. 2019 J Clean Prod. 215 534-543
Paper not yet in RePEc: Add citation now
- Son, S. ; Lee, H. ; Jeong, D. A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor. 2023 Adv Eng Inform. 57 -
Paper not yet in RePEc: Add citation now
- Sun, S. ; Liu, S. ; Liu, J. Wind field reconstruction using inverse process with optimal sensor placement. 2018 IEEE Trans Sustain Energy. 10 1290-1299
Paper not yet in RePEc: Add citation now
Sun, S. ; Wang, T. ; Yang, H. Condition monitoring of wind turbine blades based on self-supervised health representation learning: a conducive technique to effective and reliable utilization of wind energy. 2022 Appl Energy. 313 -
- Towers, P. ; Jones, B.L. Real-time wind field reconstruction from LiDAR measurements using dynamic wind model and state estimation. 2016 Wind Energy. 19 133-150
Paper not yet in RePEc: Add citation now
- Vaswani, A. ; Shazeer, N. ; Parmar, N. ; Uszkoreit, J. ; Jones, L. ; Gomez, A.N. Attention is all you need. 2017 En : Advances in neural information processing systems 30 (NIPS2017). :
Paper not yet in RePEc: Add citation now
- Wagner, R. ; Courtney, M.S. ; Pedersen, T.F. ; Davoust, S. Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar. 2016 Wind Energy. 19 1269-1287
Paper not yet in RePEc: Add citation now
Wang, J. ; Wang, S. ; Zeng, B. A novel ensemble probabilistic forecasting system for uncertainty in wind speed. 2022 Appl Energy. 313 -
- Wang, J. ; Wang, Y. ; Gao, X. Solution of tidal equations and inversion of bottom friction coefficient based on neural network. 2022 En : Proceedings of OCEANS 2022. IEEE:
Paper not yet in RePEc: Add citation now
- Wang, N. ; Johnson, K.E. ; Wright, A.D. Comparison of strategies for enhancing energy capture and reducing loads using LIDAR and feedforward control. 2013 IEEE Trans Control Syst Technol. 21 1129-1142
Paper not yet in RePEc: Add citation now
- Wang, S. ; Teng, Y. ; Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. 2021 SIAM J Sci Comput. 43 A3055-A3081
Paper not yet in RePEc: Add citation now
- Wang, Y. ; Yuan, Z. ; Xie, C. ; Wang, J. Temporally sparse data assimilation for the small-scale reconstruction of turbulence. 2022 Phys Fluids. 34 -
Paper not yet in RePEc: Add citation now
- Yan, B.W. ; Li, Q.S. Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains. 2016 Energ Conver Manage. 117 351-366
Paper not yet in RePEc: Add citation now
- Yang, L. ; Zhong, J. ; Zhang, Y. ; Bai, S. ; Li, G. ; Yang, Y. An improving faster-RCNN with multi-attention ResNet for small target detection in intelligent autonomous transport with 6G. 2023 IEEE Trans Intell Transp Syst. 24 7717-7725
Paper not yet in RePEc: Add citation now
- Yildiz, C. ; Acikgoz, H. ; Korkmaz, D. ; Budak, U. An improved residual-based convolutional neural network for very short-term wind power forecasting. 2021 Energ Conver Manage. 228 -
Paper not yet in RePEc: Add citation now
- Yilmaz, A. ; Poli, R. Successfully and efficiently training deep multi-layer perceptrons with logistic activation function simply requires initializing the weights with an appropriate negative mean. 2022 Neural Netw. 153 87-103
Paper not yet in RePEc: Add citation now
- Yin, X. ; Zhao, X. Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity LES data. 2020 IEEE Trans Ind Electron. 68 3251-3261
Paper not yet in RePEc: Add citation now
- Zhang, C. ; Shafieezadeh, A. Nested physics-informed neural network for analysis of transient flows in natural gas pipelines. 2023 Eng Appl Artif Intel. 122 -
Paper not yet in RePEc: Add citation now
Zhang, J. ; Zhao, X. Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements. 2021 Appl Energy. 288 -
Zhang, J. ; Zhao, X. Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning. 2021 Appl Energy. 300 -
- Zhang, K. ; Tang, B. ; Deng, L. ; Liu, X. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox. 2021 Measurement. 179 -
Paper not yet in RePEc: Add citation now
- Zhang, W. ; Li, J. CPINNs: a coupled physics-informed neural networks for the closed-loop geothermal system. 2023 Comput Math Appl. 132 161-179
Paper not yet in RePEc: Add citation now