Abanda, F. ; Byers, L. An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). 2016 Energy. 97 517-527
- Agenis-Nevers, M. ; Wang, Y. ; Dugachard, M. ; Salvazet, R. ; Becker, G. ; Chenu, D. Measurement and Verification for multiple buildings: An innovative baseline model selection framework applied to real energy performance contracts. 2021 Energy Build. 249 -
Paper not yet in RePEc: Add citation now
- Alrobaie, A.S. ; Krarti, M. Measurement and Verification Building Energy Prediction (MVBEP): An interpretable data-driven model development and analysis framework. 2023 Energy Build. 295 -
Paper not yet in RePEc: Add citation now
- ANSI/ASHRAE Standard 140-2017, Standard method of test for the evaluation of building energy analysis computer programs. 2017 ANSI/ASHRAE:
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Guo, M. ; Chen, Z. ; Chen, Z. ; Ji, Y. Physical energy and data-driven models in building energy prediction: A review. 2022 Energy Rep. 8 2656-2671
Paper not yet in RePEc: Add citation now
Díaz, J.A. ; Ramos, J.S. ; Delgado, M.C.G. ; García, D.H. ; Montoya, F.G. ; Domínguez, S.A. A daily baseline model based on transfer functions for the verification of energy saving. A case study of the administration room at the Palacio de la Madraza, Granada. 2018 Appl Energy. 224 538-549
- Ding, Y. ; Zhang, Q. ; Yuan, T. ; Yang, K. Model input selection for building heating load prediction: A case study for an office building in Tianjin. 2018 Energy Build. 159 254-270
Paper not yet in RePEc: Add citation now
- Dong, B. ; Cao, C. ; Lee, S.E. Applying support vector machines to predict building energy consumption in tropical region. 2005 Energy Build. 37 545-553
Paper not yet in RePEc: Add citation now
Fan, C. ; Xiao, F. ; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. 2014 Appl Energy. 127 1-10
- Golden, M. ; Scheer, A. ; Best, C. Decarbonization of electricity requires market-based demand flexibility. 2019 Electr J. 32 -
Paper not yet in RePEc: Add citation now
- Granderson, J. ; Fernandes, S. ; Crowe, E. ; Sharma, M. ; Jump, D. ; Johnson, D. Accuracy of hourly energy predictions for demand flexibility applications. 2023 Energy Build. 295 -
Paper not yet in RePEc: Add citation now
Granderson, J. ; Fernandes, S. ; Touzani, S. ; Lee, C.-C. ; Crowe, E. ; Sheridan, M. Spatio-temporal impacts of a utility’s efficiency portfolio on the distribution grid. 2020 Energy. 212 -
Granderson, J. ; Touzani, S. ; Custodio, C. ; Sohn, M.D. ; Jump, D. ; Fernandes, S. Accuracy of automated measurement and verification (M & V) techniques for energy savings in commercial buildings. 2016 Appl Energy. 173 296-308
Grillone, B. ; Danov, S. ; Sumper, A. ; Cipriano, J. ; Mor, G. A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings. 2020 Renew Sustain Energy Rev. 131 -
Grillone, B. ; Mor, G. ; Danov, S. ; Cipriano, J. ; Sumper, A. A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings. 2021 Appl Energy. 301 -
- Hens, H. Building physics – heat air and moisture: fundamentals and engineering methods with examples and exercises. 2007 Ernst & Sohn: Berlin
Paper not yet in RePEc: Add citation now
- ISO 52010-1:2017, External climatic conditions. 2017 Energy Performance of Buildings:
Paper not yet in RePEc: Add citation now
- ISO 52016-1:2017, Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads. 2017 Energy Performance of Buildings:
Paper not yet in RePEc: Add citation now
- Jang, J. ; Han, J. ; Leigh, S.-B. Prediction of heating energy consumption with operation pattern variables for non-residential buildings using LSTM networks. 2022 Energy Build. 255 -
Paper not yet in RePEc: Add citation now
- Kim, M.K. ; Kim, Y.-S. ; Srebric, J. Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: Artificial neural network vs. linear regression. 2020 Sustainable Cities Soc. 62 -
Paper not yet in RePEc: Add citation now
Krieger, E.M. ; Casey, J.A. ; Shonkoff, S.B. A framework for siting and dispatch of emerging energy resources to realize environmental and health benefits: Case study on peaker power plant displacement. 2016 Energy Policy. 96 302-313
- Leung, M. ; Tse, N.C. ; Lai, L. ; Chow, T. The use of occupancy space electrical power demand in building cooling load prediction. 2012 Energy Build. 55 151-163
Paper not yet in RePEc: Add citation now
Li, Q. ; Meng, Q. ; Cai, J. ; Yoshino, H. ; Mochida, A. Applying support vector machine to predict hourly cooling load in the building. 2009 Appl Energy. 86 2249-2256
- Liang, H. ; Ma, J. Separation of residential space cooling usage from smart meter data. 2020 IEEE Trans Smart Grid. 11 3107-3118
Paper not yet in RePEc: Add citation now
Lü, X. ; Lu, T. ; Kibert, C.J. ; Viljanen, M. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach. 2015 Appl Energy. 144 261-275
Manfren, M. ; Nastasi, B. Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0. 2023 Energy. 283 -
- Mathieu, J.L. ; Price, P.N. ; Kiliccote, S. ; Piette, M.A. Quantifying changes in building electricity use, with application to demand response. 2011 IEEE Trans Smart Grid. 2 507-518
Paper not yet in RePEc: Add citation now
- Mena, R. ; Rodríguez, F. ; Castilla, M. ; Arahal, M. A prediction model based on neural networks for the energy consumption of a bioclimatic building. 2014 Energy Build. 82 142-155
Paper not yet in RePEc: Add citation now
- Mirzaei, P.A. Computational fluid dynamics and energy modelling in buildings: fundamentals and applications. 2023 John Wiley & Sons Ltd.:
Paper not yet in RePEc: Add citation now
Morrissey, J. ; Moore, T. ; Horne, R. Affordable passive solar design in a temperate climate: An experiment in residential building orientation. 2011 Renew Energy. 36 568-577
- Muneer, T. ; Gueymard, C. ; Kambezidis, H. Solar radiation and daylight models: for the energy efficient design of buildings. 2004 Taylor & Francis Group, Jordan Hill: United Kingdom
Paper not yet in RePEc: Add citation now
- Nastasi, B. ; Manfren, M. ; Groppi, D. ; Lamagna, M. ; Mancini, F. ; Astiaso Garcia, D. Data-driven load profile modelling for advanced measurement and verification (M & V) in a fully electrified building. 2022 Build Environ. 221 -
Paper not yet in RePEc: Add citation now
- Ngo, P. CalTRACK documentation, release 2.0. 2021 :
Paper not yet in RePEc: Add citation now
- Pacheco, R. ; Ordóñez, J. ; Martínez, G. Energy efficient design of building: A review. 2012 Renew Sustain Energy Rev. 16 3559-3573
Paper not yet in RePEc: Add citation now
- Pombeiro, H. ; Santos, R. ; Carreira, P. ; Silva, C. ; Sousa, J.M. Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. 2017 Energy Build. 146 141-151
Paper not yet in RePEc: Add citation now
- Rudin, C. ; Chen, C. ; Chen, Z. ; Huang, H. ; Semenova, L. ; Zhong, C. Interpretable machine learning: Fundamental principles and 10 grand challenges. 2022 Stat Surv. 16 1-85
Paper not yet in RePEc: Add citation now
- Seyedzadeh, S. ; Pour Rahimian, F. ; Rastogi, P. ; Glesk, I. Tuning machine learning models for prediction of building energy loads. 2019 Sustainable Cities Soc. 47 -
Paper not yet in RePEc: Add citation now
Skillington, K. ; Crawford, R.H. ; Warren-Myers, G. ; Davidson, K. A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings. 2022 Energy Policy. 168 -
- Srivastav, A. ; Tewari, A. ; Dong, B. Baseline building energy modeling and localized uncertainty quantification using Gaussian mixture models. 2013 Energy Build. 65 438-447
Paper not yet in RePEc: Add citation now
Tzani, D. ; Stavrakas, V. ; Santini, M. ; Thomas, S. ; Rosenow, J. ; Flamos, A. Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes. 2022 Renew Sustain Energy Rev. 158 -
- Valladares-Rendón, L. ; Schmid, G. ; Lo, S.-L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. 2017 Energy Build. 140 458-479
Paper not yet in RePEc: Add citation now
Walter, T. ; Sohn, M.D. A regression-based approach to estimating retrofit savings using the Building Performance Database. 2016 Appl Energy. 179 996-1005
- Wang, R. ; Lu, S. ; Li, Q. Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings. 2019 Sustainable Cities Soc. 49 -
Paper not yet in RePEc: Add citation now
- Wang, Z. ; Wang, Y. ; Zeng, R. ; Srinivasan, R.S. ; Ahrentzen, S. Random Forest based hourly building energy prediction. 2018 Energy Build. 171 11-25
Paper not yet in RePEc: Add citation now
Wei, Y. ; Xia, L. ; Pan, S. ; Wu, J. ; Zhang, X. ; Han, M. ; Zhang, W. ; Xie, J. ; Li, Q. Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks. 2019 Appl Energy. 240 276-294
- Yang, S. ; Chen, W. ; Wan, M.P. A machine-learning-based event-triggered model predictive control for building energy management. 2023 Build Environ. 233 -
Paper not yet in RePEc: Add citation now
- Yu, J. ; Chang, W.-S. ; Dong, Y. Building energy prediction models and related uncertainties: A review. 2022 Buildings. 12 1284-
Paper not yet in RePEc: Add citation now
- Zeng, A. ; Liu, S. ; Yu, Y. Comparative study of data driven methods in building electricity use prediction. 2019 Energy Build. 194 289-300
Paper not yet in RePEc: Add citation now