Abbasi, M.H. ; Taki, M. ; Rajabi, A. ; Li, L. ; Zhang, J. Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach. 2019 Appl Energy. 239 1294-1307
Alabi, T.M. ; Lawrence, N.P. ; Lu, L. ; Yang, Z. ; Bhushan Gopaluni, R. Automated deep reinforcement learning for real-time scheduling strategy of multi-energy system integrated with post-carbon and direct-air carbon captured system. 2023 Appl Energy. 333 -
Alabi, T.M. ; Lu, L. ; Yang, Z. Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy. 2022 Appl Energy. 314 -
- Alabi, T.M. ; Lu, L. ; Yang, Z. Improved hybrid inexact optimal scheduling of virtual powerplant (VPP) for zero-carbon multi-energy system (ZCMES) incorporating electric vehicle (EV) multi-flexible approach. 2021 J Clean Prod. 326 -
Paper not yet in RePEc: Add citation now
- Alahyari, A. ; Ehsan, M. ; Mousavizadeh, M. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties. 2019 J Energy Storage. 25 -
Paper not yet in RePEc: Add citation now
Chang, W. ; Yang, Q. Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading. 2023 Appl Energy. 351 -
- Chen, S. ; Ge, C. ; Tong, Z. ; Wang, J. ; Song, Y. ; Wang, J. AdaptFormer: Adapting vision transformers for scalable visual recognition. 2022 Adv Neural Inf Process Syst. 35 16664-16678
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Niu, Y. ; Du, M. ; Wang, J. A two-stage robust optimization model for a virtual power plant considering responsiveness-based electric vehicle aggregation. 2023 J Clean Prod. 405 -
Paper not yet in RePEc: Add citation now
- Corsetti, E. ; Riaz, S. ; Riello, M. ; Mancarella, P. Modelling and deploying multi-energy flexibility: The energy lattice framework. 2021 Adv Appl Energy. 2 -
Paper not yet in RePEc: Add citation now
Feng, B. ; Liu, Z. ; Huang, G. ; Guo, C. Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles. 2023 Appl Energy. 349 -
- Ghasemi Olanlari, F. ; Amraee, T. ; Moradi-Sepahvand, M. ; Ahmadian, A. Coordinated multi-objective scheduling of a multi-energy virtual power plant considering storages and demand response. 2022 IET Gener Transmiss Distrib. 16 3539-3562
Paper not yet in RePEc: Add citation now
Gržanić, M. ; Capuder, T. Collaboration model between distribution system operator and flexible prosumers based on a unique dynamic price for electricity and flexibility. 2023 Appl Energy. 350 -
- Hirst, D. ; Keep, M. Carbon price floor (CPF) and the price support mechanism. 2018 Houof Commons Lib Briefing Pap. 20 -
Paper not yet in RePEc: Add citation now
- Hu, E.J. ; Shen, Y. ; Wallis, P. ; Allen-Zhu, Z. ; Li, Y. ; Wang, S. LoRA: Low-rank adaptation of large language models. 2021 :
Paper not yet in RePEc: Add citation now
Huang, P. ; Lovati, M. ; Zhang, X. ; Bales, C. ; Hallbeck, S. ; Becker, A. Transforming a residential building cluster into electricity prosumers in Sweden: Optimal design of a coupled PV-heat pump-thermal storage-electric vehicle system. 2019 Appl Energy. 255 -
- Huang, W. ; Zhang, N. ; Yang, J. ; Wang, Y. ; Kang, C. Optimal configuration planning of multi-energy systems considering distributed renewable energy. 2017 IEEE Trans Smart Grid. 10 1452-1464
Paper not yet in RePEc: Add citation now
- Javadi, M. ; Nezhad, A.E. ; Firouzi, K. ; Besanjideh, F. ; Gough, M. ; Lotfi, M. Optimal operation of home energy management systems in the presence of the inverter-based heating, ventilation and air conditioning system. 2020 En : 2020 IEEE international conference on environment and electrical engineering and 2020 IEEE industrial and commercial power systems europe. :
Paper not yet in RePEc: Add citation now
Jendoubi, I. ; Bouffard, F. Multi-agent hierarchical reinforcement learning for energy management. 2023 Appl Energy. 332 -
Jing, R. ; Xie, M.N. ; Wang, F.X. ; Chen, L.X. Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management. 2020 Appl Energy. 262 -
- Ju, L. ; Li, H. ; Zhao, J. ; Chen, K. ; Tan, Q. ; Tan, Z. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response. 2016 Energy Convers Manage. 128 160-177
Paper not yet in RePEc: Add citation now
- Kumari, A. ; Kakkar, R. ; Tanwar, S. ; Garg, D. ; Polkowski, Z. ; Alqahtani, F. Multi-agent-based decentralized residential energy management using deep reinforcement learning. 2024 J Build Eng. 87 -
Paper not yet in RePEc: Add citation now
Li, J. ; Yu, T. ; Zhang, X. Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning. 2022 Appl Energy. 306 -
- Mai, Y. ; Zang, Y. ; Yin, Q. ; Ni, W. ; Huang, K. Deep multi-task multi-agent reinforcement learning with knowledge transfer. 2023 IEEE Trans Games. 1-11
Paper not yet in RePEc: Add citation now
Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. 2014 Energy. 65 1-17
May, R. ; Huang, P. A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets. 2023 Appl Energy. 334 -
- Mining, Energy &, Z. South Australia’s virtual power plant. 2023 :
Paper not yet in RePEc: Add citation now
- Naughton, J. ; Wang, H. ; Riaz, S. ; Cantoni, M. ; Mancarella, P. Optimization of multi-energy virtual power plants for providing multiple market and local network services. 2020 Electr Power Syst Res. 189 -
Paper not yet in RePEc: Add citation now
Nebuloni, R. ; Meraldi, L. ; Bovo, C. ; Ilea, V. ; Berizzi, A. ; Sinha, S. A hierarchical two-level MILP optimization model for the management of grid-connected BESS considering accurate physical model. 2023 Appl Energy. 334 -
Nweye, K. ; Sankaranarayanan, S. ; Nagy, Z. MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities. 2023 Appl Energy. 346 -
- Pudjianto, D. ; Ramsay, C. ; Strbac, G. Virtual power plant and system integration of distributed energy resources. 2007 IET Renew Power Gener. 1 10-16
Paper not yet in RePEc: Add citation now
- Qiu, D. ; Wang, J. ; Dong, Z. ; Wang, Y. ; Strbac, G. Mean-field multi-agent reinforcement learning for peer-to-peer multi-energy trading. 2022 IEEE Trans Power Syst. -
Paper not yet in RePEc: Add citation now
Qiu, D. ; Xue, J. ; Zhang, T. ; Wang, J. ; Sun, M. Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading. 2023 Appl Energy. 333 -
- RWTH Aachen University, S. FIWARE lab. 2021 :
Paper not yet in RePEc: Add citation now
- Sabadini, F. ; Madlener, R. The economic potential of grid defection of energy prosumer households in Germany. 2021 Adv Appl Energy. 4 -
Paper not yet in RePEc: Add citation now
- Schulman, J. ; Moritz, P. ; Levine, S. ; Jordan, M. ; Abbeel, P. High-dimensional continuous control using generalized advantage estimation. 2015 :
Paper not yet in RePEc: Add citation now
- Sutton, R.S. ; Barto, A.G. Reinforcement learning, second edition: an introduction. 2018 MIT Press:
Paper not yet in RePEc: Add citation now
- US Department of Energy’s Programs, Offices, and National Laboratories, S. Open energy data initiative (OEDI). 2021 :
Paper not yet in RePEc: Add citation now
- Vaswani, A. ; Shazeer, N. ; Parmar, N. ; Uszkoreit, J. ; Jones, L. ; Gomez, A.N. Attention is all you need. 2017 En : . Curran Associates, Inc:
Paper not yet in RePEc: Add citation now
Wang, J. ; Ilea, V. ; Bovo, C. ; Xie, N. ; Wang, Y. Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework. 2023 Energy. 278 -
- Wang, Y. ; Gao, W. ; Qian, F. ; Li, Y. Evaluation of economic benefits of virtual power plant between demand and plant sides based on cooperative game theory. 2021 Energy Convers Manage. 238 -
Paper not yet in RePEc: Add citation now
- Wang, Y. ; Li, Y. ; Cao, Y. ; Shahidehpour, M. ; Jiang, L. ; Long, Y. Optimal operation strategy for multi-energy microgrid participating in auxiliary service. 2023 IEEE Trans Smart Grid. 14 3523-3534
Paper not yet in RePEc: Add citation now
- Wang, Y. ; Zhang, N. ; Kang, C. ; Kirschen, D.S. ; Yang, J. ; Xia, Q. Standardized matrix modeling of multiple energy systems. 2017 IEEE Trans Smart Grid. 10 257-270
Paper not yet in RePEc: Add citation now
Wang, Z. ; Xiao, F. ; Ran, Y. ; Li, Y. ; Xu, Y. Scalable energy management approach of residential hybrid energy system using multi-agent deep reinforcement learning. 2024 Appl Energy. 367 -
Wang, Z. ; Yu, X. ; Mu, Y. ; Jia, H. A distributed peer-to-peer energy transaction method for diversified prosumers in urban community microgrid system. 2020 Appl Energy. 260 -
- Wen, M. ; Kuba, J. ; Lin, R. ; Zhang, W. ; Wen, Y. ; Wang, J. Multi-agent reinforcement learning is a sequence modeling problem. 2022 Adv Neural Inf Process Syst. 35 16509-16521
Paper not yet in RePEc: Add citation now
- Yang, C. ; Yang, G. ; Chen, H. ; Zhang, J. Explicitly learning policy under partial observability in multiagent reinforcement learning. 2023 En : 2023 international joint conference on neural networks. :
Paper not yet in RePEc: Add citation now
- Yi, Z. ; Xu, Y. ; Wang, X. ; Gu, W. ; Sun, H. ; Wu, Q. An improved two-stage deep reinforcement learning approach for regulation service disaggregation in a virtual power plant. 2022 IEEE Trans Smart Grid. 13 2844-2858
Paper not yet in RePEc: Add citation now
- Yu, C. ; Velu, A. ; Vinitsky, E. ; Wang, Y. ; Bayen, A.M. ; Wu, Y. The surprising effectiveness of MAPPO in cooperative, multi-agent games. 2021 :
Paper not yet in RePEc: Add citation now
Yu, S. ; Fang, F. ; Liu, Y. ; Liu, J. Uncertainties of virtual power plant: Problems and countermeasures. 2019 Appl Energy. 239 454-470
Zeng, Y. ; Wei, X. ; Yao, Y. ; Xu, Y. ; Sun, H. ; Kin Victor Chan, W. Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach. 2023 Appl Energy. 345 -
Zhang, B. ; Hu, W. ; Cao, D. ; Ghias, A.M.Y.M. ; Chen, Z. Novel data-driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach. 2023 Appl Energy. 339 -
- Zhao, J. ; Hu, X. ; Yang, M. ; Zhou, W. ; Zhu, J. ; Li, H. CTDS: Centralized teacher with decentralized student for multi-agent reinforcement learning. 2022 IEEE Trans Games. 1-12
Paper not yet in RePEc: Add citation now
Zhu, D. ; Yang, B. ; Liu, Y. ; Wang, Z. ; Ma, K. ; Guan, X. Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park. 2022 Appl Energy. 311 -
- Zhu, Z. ; Chan, K.W. ; Xia, S. ; Bu, S. Optimal bi-level bidding and dispatching strategy between active distribution network and virtual alliances using distributed robust multi-agent deep reinforcement learning. 2022 IEEE Trans Smart Grid. 13 2833-2843
Paper not yet in RePEc: Add citation now