create a website

An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting. (2024). Du, Pei ; Li, Mingzhu ; Guo, Ju-e, ; Yang, Dongchuan.
In: Applied Energy.
RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014405.

Full description at Econpapers || Download paper

Cited: 7

Citations received by this document

Cites: 57

References cited by this document

Cocites: 31

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Wind-Speed Prediction in Renewable-Energy Generation Using an IHOA. (2025). Zhao, Yang ; Song, Ying ; Wang, Chao ; Lin, Guoxiong ; Chi, Yaodan ; Zhang, Yao ; Ding, Xinyu.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:14:p:6279-:d:1697791.

    Full description at Econpapers || Download paper

  2. A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis. (2025). Dou, Xun ; He, YU.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:7:p:1066-:d:1620183.

    Full description at Econpapers || Download paper

  3. Deterministic and probabilistic wind speed forecasting using decomposition methods: Accuracy and uncertainty. (2025). Qin, Wen ; Hu, Kun ; Che, Jinxing ; Sun, Qian.
    In: Renewable Energy.
    RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001776.

    Full description at Econpapers || Download paper

  4. Multi-step ahead wind speed forecasting approach coupling PSR, NNCT-based multi-model fusion and a new optimization algorithm. (2025). Wen, Quan ; Ruan, Xiaolong ; Shang, Zhihao ; Chen, Yanhua.
    In: Renewable Energy.
    RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020603.

    Full description at Econpapers || Download paper

  5. A hybrid wind speed forecasting model with rolling mapping decomposition and temporal convolutional networks. (2025). Chen, Huiling ; Heidari, Ali Asghar ; Cai, Xiangjun ; Liu, Zhichun ; Zou, Yuntao.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225013155.

    Full description at Econpapers || Download paper

  6. Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis. (2025). Zeng, Huanze ; Wu, Binrong ; Lin, Jiacheng ; Fang, Haoyu.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007457.

    Full description at Econpapers || Download paper

  7. An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting. (2024). Zhang, Zheyu ; He, Yingying ; Guan, Tengda.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:18:p:4615-:d:1478321.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aasim, Singh S.N. ; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. 2019 Energ. 136 758-768
    Paper not yet in RePEc: Add citation now
  2. Altan, A. ; Karasu, S. ; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. 2021 Appl Soft Comput. 100 -
    Paper not yet in RePEc: Add citation now
  3. Bergstra, J.S. ; Bardenet, R. ; Bengio, Y. ; Kégl, B. Algorithms for Hyper-Parameter Optimization. 2011 Adv Neural Inf Proces Syst. 2546-2554
    Paper not yet in RePEc: Add citation now
  4. Bommidi, B.S. ; Teeparthi, K. ; Kosana, V. Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function. 2023 Energy. 265 -

  5. Chen, Y. ; Yu, S. ; Islam, S. ; Lim, C.P. ; Muyeen, S.M. Decomposition-based wind power forecasting models and their boundary issue: an in-depth review and comprehensive discussion on potential solutions. 2022 Energy Rep. 8 8805-8820
    Paper not yet in RePEc: Add citation now
  6. Colominas, M.A. ; Schlotthauer, G. ; Torres, M.E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. 2014 Biomed Signal Process Control. 14 19-29
    Paper not yet in RePEc: Add citation now
  7. Da Silva, R.G. ; Moreno, S.R. ; Ribeiro, M.H.D.M. ; Larcher, J.H.K. ; Mariani, V.C. ; Coelho, L.D.S. Multi-step short-term wind speed forecasting based on multi-stage decomposition coupled with stacking-ensemble learning approach. 2022 Int J Electr Power Energy Syst. 143 -
    Paper not yet in RePEc: Add citation now
  8. Dragomiretskiy, K. ; Zosso, D. Variational Mode Decomposition. 2014 IEEE Trans Signal Process. 62 531-544
    Paper not yet in RePEc: Add citation now
  9. Du, P. ; Yang, D. ; Li, Y. ; Wang, J. An innovative interpretable combined learning model for wind speed forecasting. 2024 Appl Energy. 358 -

  10. Duan, J. ; Wang, P. ; Ma, W. ; Fang, S. ; Hou, Z. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting. 2022 Int J Electr Power Energy Syst. 134 -
    Paper not yet in RePEc: Add citation now
  11. Duan, J. ; Wang, P. ; Ma, W. ; Tian, X. ; Fang, S. ; Cheng, Y. Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy long short -term memory neural network. 2021 Energy. 214 -

  12. Emeksiz, C. ; Tan, M. Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach. 2022 Energy. 238 -

  13. Emeksiz, C. ; Tan, M. Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN). 2022 Energy. 249 -

  14. Fadare, D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. 2010 Appl Energy. 87 934-942

  15. Guo, X. ; Zhu, C. ; Hao, J. ; Zhang, S. ; Zhu, L. A hybrid method for short-term wind speed forecasting based on Bayesian optimization and error correction. 2021 J Renew Sustain Energy. 13 -
    Paper not yet in RePEc: Add citation now
  16. Hao, Y. ; Tian, C. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. 2019 Appl Energy. 238 368-383

  17. Hassan, A. ; Ilyas, S.Z. ; Jalil, A. ; Ullah, Z. Monetization of the environmental damage caused by fossil fuels. 2021 Environ Sci Pollut R. 28 21204-21211
    Paper not yet in RePEc: Add citation now
  18. Hutchinson, M. ; Zhao, F. Global wind report 2023. 2023 Global Wind Energy Council: Belgium
    Paper not yet in RePEc: Add citation now
  19. Jiang, W. ; Lin, P. ; Liang, Y. ; Gao, H. ; Zhang, D. ; Hu, G. A novel hybrid deep learning model for multi-step wind speed forecasting considering pairwise dependencies among multiple atmospheric variables. 2023 Energy. 285 -

  20. Li, D. ; Li, Y. ; Wang, C. ; Chen, M. ; Wu, Q. Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks. 2023 Appl Energy. 331 -

  21. Li, G. ; Shi, J. On comparing three artificial neural networks for wind speed forecasting. 2010 Appl Energy. 87 2313-2320

  22. Li, H. ; Shen, Y. ; Zhu, Y. Stock Price Prediction Using Attention-based Multi-Input LSTM. 2018 Proceedings of the 10th Asian Conference on Machine Learning. 454-469
    Paper not yet in RePEc: Add citation now
  23. Li, J. ; Zhang, S. ; Yang, Z. A wind power forecasting method based on optimized decomposition prediction and error correction. 2022 Electr Power Syst Res. 208 -
    Paper not yet in RePEc: Add citation now
  24. Liu, H. ; Tian, H. ; Liang, X. ; Li, Y. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. 2015 Appl Energy. 157 183-194

  25. Liu, M.-D. ; Ding, L. ; Bai, Y.-L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. 2021 Energy Convers Manag. 233 -
    Paper not yet in RePEc: Add citation now
  26. Liu, X. ; Lin, Z. ; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA - a comparison against GRU and LSTM. 2021 Energy. 227 -

  27. Lotfipoor, A. ; Patidar, S. ; Jenkins, D.P. Deep neural network with empirical mode decomposition and Bayesian optimisation for residential load forecasting. 2024 Expert Syst Appl. 237 -
    Paper not yet in RePEc: Add citation now
  28. Lv, S.-X. ; Wang, L. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. 2022 Appl Energy. 311 -

  29. Ma, X. ; Jin, Y. ; Dong, Q. A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting. 2017 Appl Soft Comput. 54 296-312
    Paper not yet in RePEc: Add citation now
  30. Moreno, S.R. ; Mariani, V.C. ; Coelho, L.D.S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian northeast. 2021 Renew Energy. 164 1508-1526

  31. Naik, J. ; Dash, P.K. ; Dhar, S. A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based multi-kernel robust ridge regression. 2019 Renew Energy. 136 701-731

  32. Neshat, M. ; Majidi Nezhad, M. ; Mirjalili, S. ; Piras, G. ; Garcia, D.A. Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North Aegean Islands case studies. 2022 Energy Convers Manag. 259 -
    Paper not yet in RePEc: Add citation now
  33. Neshat, M. ; Nezhad, M.M. ; Abbasnejad, E. ; Mirjalili, S. ; Groppi, D. ; Heydari, A. Wind turbine power output prediction using a new hybrid neuro-evolutionary method. 2021 Energy. 229 -

  34. Noorollahi, Y. ; Jokar, M.A. ; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. 2016 Energy Convers Manag. 115 17-25
    Paper not yet in RePEc: Add citation now
  35. Peng, T. ; Zhou, J. ; Zhang, C. ; Zheng, Y. Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine. 2017 Energy Convers Manag. 153 589-602
    Paper not yet in RePEc: Add citation now
  36. Qian, Z. ; Pei, Y. ; Zareipour, H. ; Chen, N. A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. 2019 Appl Energy. 235 939-953

  37. Qu, Z. ; Mao, W. ; Zhang, K. ; Zhang, W. ; Li, Z. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. 2019 Renew Energy. 133 919-929

  38. Quilty, J. ; Adamowski, J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. 2018 J Hydrol. 563 336-353
    Paper not yet in RePEc: Add citation now
  39. Ren, Y. ; Suganthan, P.N. ; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. 2016 IEEE Trans Neural Netw Learning Syst. 27 1793-1798
    Paper not yet in RePEc: Add citation now
  40. Shi, J. ; Teh, J. Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion. 2024 Appl Energy. 353 -

  41. Sibtain, M. ; Bashir, H. ; Nawaz, M. ; Hameed, S. ; Imran Azam, M. ; Li, X. A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network. 2022 Energy Convers Manag. 263 -
    Paper not yet in RePEc: Add citation now
  42. Tascikaraoglu, A. ; Sanandaji, B.M. ; Poolla, K. ; Varaiya, P. Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using wavelet transform. 2016 Appl Energy. 165 735-747

  43. Wang, L. ; Li, X. ; Bai, Y. Short-term wind speed prediction using an extreme learning machine model with error correction. 2018 Energy Convers Manag. 162 239-250
    Paper not yet in RePEc: Add citation now
  44. Wang, X. ; Yu, Q. ; Yang, Y. Short-term wind speed forecasting using variational mode decomposition and support vector regression. 2018 J Intell Fuzzy Syst. 34 3811-3820
    Paper not yet in RePEc: Add citation now
  45. Wu, H. ; Meng, K. ; Fan, D. ; Zhang, Z. ; Liu, Q. Multistep short-term wind speed forecasting using transformer. 2022 Energy. 261 -

  46. Xiao, Y. ; Wang, X. ; Wang, J. ; Zhang, H. An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA. 2021 Technol Forecast Soc Change. 166 -

  47. Xu, L. ; Ou, Y. ; Cai, J. ; Wang, J. ; Fu, Y. ; Bian, X. Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition. 2023 Renew Energy. 216 -

  48. Yamasaki, M. ; Freire, R.Z. ; Seman, L.O. ; Stefenon, S.F. ; Mariani, V.C. ; Dos Santos, Coelho L. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting. 2024 Int J Electr Power Energy Syst. 155 -
    Paper not yet in RePEc: Add citation now
  49. Yan, X. ; Liu, Y. ; Xu, Y. ; Jia, M. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. 2020 Energy Convers Manag. 225 -
    Paper not yet in RePEc: Add citation now
  50. Yang, D. ; Guo, J. ; Li, Y. ; Sun, S. ; Wang, S. Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach. 2023 Energy. 263 -

  51. Yang, H.-F. ; Chen, Y.-P.P. Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods. 2019 Artif Intell. 277 -
    Paper not yet in RePEc: Add citation now
  52. Zhang, C. ; Ma, H. ; Hua, L. ; Sun, W. ; Nazir, M.S. ; Peng, T. An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction. 2022 Energy. 254 -

  53. Zhang, D. ; Peng, X. ; Pan, K. ; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. 2019 Energy Convers Manag. 180 338-357
    Paper not yet in RePEc: Add citation now
  54. Zhang, G. ; Liu, D. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting. 2020 Energy Convers Manag. 226 -
    Paper not yet in RePEc: Add citation now
  55. Zhang, G. ; Zhang, Y. ; Wang, H. ; Liu, D. ; Cheng, R. ; Yang, D. Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network. 2024 Energy. 288 -

  56. Zhang, J. ; Draxl, C. ; Hopson, T. ; Monache, L.D. ; Vanvyve, E. ; Hodge, B.-M. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. 2015 Appl Energy. 156 528-541

  57. Zhang, Y. ; Chen, B. ; Pan, G. ; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. 2019 Energy Convers Manag. 195 180-197
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Wind-Mambaformer: Ultra-Short-Term Wind Turbine Power Forecasting Based on Advanced Transformer and Mamba Models. (2025). Wang, Anqi ; Zhou, Meng ; Zhao, Yiyang ; Dong, Zhe.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:5:p:1155-:d:1600496.

    Full description at Econpapers || Download paper

  2. A reinforcement learning-based ensemble forecasting framework for renewable energy forecasting. (2025). Huang, Xianfeng ; Zhu, David Z ; Ye, Jian ; Fang, Guohua ; Wu, Zhiyuan.
    In: Renewable Energy.
    RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003544.

    Full description at Econpapers || Download paper

  3. An optimal multi-scale ensemble transformer for carbon emission allowance price prediction based on time series patching and two-stage stabilization. (2025). Wang, Jujie ; Zhang, Xin ; He, Xuecheng.
    In: Energy.
    RePEc:eee:energy:v:328:y:2025:i:c:s0360544225020997.

    Full description at Econpapers || Download paper

  4. Experimental investigation on effect of drag-reduced cavitation on stability of a blub turbine. (2025). Ge, Zhenguo ; Li, Tianshu ; Luo, Xingqi ; Zhu, Guojun ; Wu, Guangkuan ; Zhao, Nannan ; Feng, Jianjun.
    In: Energy.
    RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021590.

    Full description at Econpapers || Download paper

  5. Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition. (2025). Chen, LU ; Leng, Zhiyuan ; Mei, Ziyi ; Xie, Tao ; Liu, Fanqian ; Yi, Bin.
    In: Energy.
    RePEc:eee:energy:v:322:y:2025:i:c:s0360544225011934.

    Full description at Econpapers || Download paper

  6. A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer. (2025). He, Xuecheng ; Shu, Shuqin ; Jiang, Weiyi ; Wang, Jujie.
    In: Energy.
    RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008527.

    Full description at Econpapers || Download paper

  7. A review of solar and wind energy forecasting: From single-site to multi-site paradigm. (2025). Verdone, Alessio ; Panella, Massimo ; de Santis, Enrico ; Rizzi, Antonello.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007469.

    Full description at Econpapers || Download paper

  8. Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis. (2025). Zeng, Huanze ; Wu, Binrong ; Lin, Jiacheng ; Fang, Haoyu.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007457.

    Full description at Econpapers || Download paper

  9. Wind-Speed Multi-Step Forecasting Based on Variational Mode Decomposition, Temporal Convolutional Network, and Transformer Model. (2024). Guo, Xiuting ; Zhang, Shengcai ; Zhu, Changsheng.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:9:p:1996-:d:1381026.

    Full description at Econpapers || Download paper

  10. Wind power forecasting system with data enhancement and algorithm improvement. (2024). Zhang, Yagang ; Kong, Xue ; Cheng, Xiaodan ; Wang, Jingchao.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:196:y:2024:i:c:s1364032124000728.

    Full description at Econpapers || Download paper

  11. Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints. (2024). Yang, Mao ; Jiang, Yue ; Zhang, Wei ; Li, YI ; Su, Xin.
    In: Renewable Energy.
    RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019025.

    Full description at Econpapers || Download paper

  12. A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement. (2024). Gui, Renzhou ; Zhu, Wenbo ; Li, Zheng ; Zhao, Xiaomeng ; Wang, Yaqi.
    In: Energy.
    RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032912.

    Full description at Econpapers || Download paper

  13. Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention. (2024). Yang, Pengwei ; Mujeeb, Asad ; Wang, Songpo ; Hu, Zechun ; He, Jinhua.
    In: Energy.
    RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029815.

    Full description at Econpapers || Download paper

  14. Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S. (2024). Sun, Xiaoying ; Liu, Haizhong.
    In: Energy.
    RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020024.

    Full description at Econpapers || Download paper

  15. Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering. (2024). Guo, Yunfeng ; Huang, Tao ; Yang, Mao ; Fan, Fulin.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015706.

    Full description at Econpapers || Download paper

  16. GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction. (2024). Xu, Xuefang ; Wang, Shu ; Lin, Shengmao ; Shi, Peiming.
    In: Energy.
    RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001750.

    Full description at Econpapers || Download paper

  17. A hybrid methodology using VMD and disentangled features for wind speed forecasting. (2024). Kosana, Vishalteja ; Parri, Srihari ; Teeparthi, Kiran.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032188.

    Full description at Econpapers || Download paper

  18. High and low frequency wind power prediction based on Transformer and BiGRU-Attention. (2024). Yang, Wei ; Wang, Shuangxin ; Yin, Qingyan ; Shi, Jiarong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x.

    Full description at Econpapers || Download paper

  19. Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting. (2024). Wang, Lin ; Wu, Binrong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031225.

    Full description at Econpapers || Download paper

  20. A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection. (2024). Li, Xuefeng ; Lin, Qingcheng ; Xiao, Hui ; Cai, Huiling ; Liu, Hanwei.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031183.

    Full description at Econpapers || Download paper

  21. Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network. (2024). Zhang, YI ; Cheng, Runkun ; Wang, Hui ; Yang, DI ; Liu, DA.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030128.

    Full description at Econpapers || Download paper

  22. WindFix: Harnessing the power of self-supervised learning for versatile imputation of offshore wind speed time series. (2024). Cao, Leilei ; Pu, Huayan ; Zhang, Dan ; Zhou, Dai ; Wu, Chuhan ; Cai, Candong ; Chen, Yaoran ; Peng, Yan ; Kuang, Limin.
    In: Energy.
    RePEc:eee:energy:v:287:y:2024:i:c:s0360544223023897.

    Full description at Econpapers || Download paper

  23. Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction. (2024). Fan, Yuzhen ; Wang, Junjie ; Hou, Guolian.
    In: Energy.
    RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030347.

    Full description at Econpapers || Download paper

  24. A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm. (2024). Wang, Zewei ; Yuan, Yue ; Fu, Xiaoling ; Yang, Ming ; Lin, Hong.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009949.

    Full description at Econpapers || Download paper

  25. An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting. (2024). Du, Pei ; Li, Mingzhu ; Guo, Ju-e, ; Yang, Dongchuan.
    In: Applied Energy.
    RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014405.

    Full description at Econpapers || Download paper

  26. A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition. (2024). Yu, Zhaoxu ; Xiong, Zhanhang ; Huang, Yongmin ; Liu, Yalei ; Yao, Jianjiang.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923016124.

    Full description at Econpapers || Download paper

  27. Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables. (2024). Jiang, Wenjun ; Lin, Pengfei ; Gao, Huanxiang ; Hu, Gang ; Zhang, Dongqin ; Liu, BO ; Liang, Yang.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015192.

    Full description at Econpapers || Download paper

  28. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. (2023). Xinxin, Wang ; Xiaopan, Shen ; Xueyi, AI ; Shijia, LI.
    In: PLOS ONE.
    RePEc:plo:pone00:0289161.

    Full description at Econpapers || Download paper

  29. Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model. (2023). Chen, Suhua ; Zhou, Nanrun ; Liu, Jialin ; Gong, Chen.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:12:p:2746-:d:1173390.

    Full description at Econpapers || Download paper

  30. Knowledge sharing-based multi-block federated learning for few-shot oil layer identification. (2023). Zeng, Xingjie ; Zhang, Weishan ; Cao, Shaohua ; Fan, Lulu ; Zhou, Jiehan ; Chen, Bingyang.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018005.

    Full description at Econpapers || Download paper

  31. Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process. (2023). Huang, Yutong ; Guo, Yunfeng ; Yang, Mao.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023411.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 10:08:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.