- Aasim, Singh S.N. ; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. 2019 Energ. 136 758-768
Paper not yet in RePEc: Add citation now
- Altan, A. ; Karasu, S. ; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. 2021 Appl Soft Comput. 100 -
Paper not yet in RePEc: Add citation now
- Bergstra, J.S. ; Bardenet, R. ; Bengio, Y. ; Kégl, B. Algorithms for Hyper-Parameter Optimization. 2011 Adv Neural Inf Proces Syst. 2546-2554
Paper not yet in RePEc: Add citation now
Bommidi, B.S. ; Teeparthi, K. ; Kosana, V. Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function. 2023 Energy. 265 -
- Chen, Y. ; Yu, S. ; Islam, S. ; Lim, C.P. ; Muyeen, S.M. Decomposition-based wind power forecasting models and their boundary issue: an in-depth review and comprehensive discussion on potential solutions. 2022 Energy Rep. 8 8805-8820
Paper not yet in RePEc: Add citation now
- Colominas, M.A. ; Schlotthauer, G. ; Torres, M.E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. 2014 Biomed Signal Process Control. 14 19-29
Paper not yet in RePEc: Add citation now
- Da Silva, R.G. ; Moreno, S.R. ; Ribeiro, M.H.D.M. ; Larcher, J.H.K. ; Mariani, V.C. ; Coelho, L.D.S. Multi-step short-term wind speed forecasting based on multi-stage decomposition coupled with stacking-ensemble learning approach. 2022 Int J Electr Power Energy Syst. 143 -
Paper not yet in RePEc: Add citation now
- Dragomiretskiy, K. ; Zosso, D. Variational Mode Decomposition. 2014 IEEE Trans Signal Process. 62 531-544
Paper not yet in RePEc: Add citation now
Du, P. ; Yang, D. ; Li, Y. ; Wang, J. An innovative interpretable combined learning model for wind speed forecasting. 2024 Appl Energy. 358 -
- Duan, J. ; Wang, P. ; Ma, W. ; Fang, S. ; Hou, Z. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting. 2022 Int J Electr Power Energy Syst. 134 -
Paper not yet in RePEc: Add citation now
Duan, J. ; Wang, P. ; Ma, W. ; Tian, X. ; Fang, S. ; Cheng, Y. Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy long short -term memory neural network. 2021 Energy. 214 -
Emeksiz, C. ; Tan, M. Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach. 2022 Energy. 238 -
Emeksiz, C. ; Tan, M. Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN). 2022 Energy. 249 -
Fadare, D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. 2010 Appl Energy. 87 934-942
- Guo, X. ; Zhu, C. ; Hao, J. ; Zhang, S. ; Zhu, L. A hybrid method for short-term wind speed forecasting based on Bayesian optimization and error correction. 2021 J Renew Sustain Energy. 13 -
Paper not yet in RePEc: Add citation now
Hao, Y. ; Tian, C. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. 2019 Appl Energy. 238 368-383
- Hassan, A. ; Ilyas, S.Z. ; Jalil, A. ; Ullah, Z. Monetization of the environmental damage caused by fossil fuels. 2021 Environ Sci Pollut R. 28 21204-21211
Paper not yet in RePEc: Add citation now
- Hutchinson, M. ; Zhao, F. Global wind report 2023. 2023 Global Wind Energy Council: Belgium
Paper not yet in RePEc: Add citation now
Jiang, W. ; Lin, P. ; Liang, Y. ; Gao, H. ; Zhang, D. ; Hu, G. A novel hybrid deep learning model for multi-step wind speed forecasting considering pairwise dependencies among multiple atmospheric variables. 2023 Energy. 285 -
Li, D. ; Li, Y. ; Wang, C. ; Chen, M. ; Wu, Q. Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks. 2023 Appl Energy. 331 -
Li, G. ; Shi, J. On comparing three artificial neural networks for wind speed forecasting. 2010 Appl Energy. 87 2313-2320
- Li, H. ; Shen, Y. ; Zhu, Y. Stock Price Prediction Using Attention-based Multi-Input LSTM. 2018 Proceedings of the 10th Asian Conference on Machine Learning. 454-469
Paper not yet in RePEc: Add citation now
- Li, J. ; Zhang, S. ; Yang, Z. A wind power forecasting method based on optimized decomposition prediction and error correction. 2022 Electr Power Syst Res. 208 -
Paper not yet in RePEc: Add citation now
Liu, H. ; Tian, H. ; Liang, X. ; Li, Y. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. 2015 Appl Energy. 157 183-194
- Liu, M.-D. ; Ding, L. ; Bai, Y.-L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. 2021 Energy Convers Manag. 233 -
Paper not yet in RePEc: Add citation now
Liu, X. ; Lin, Z. ; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA - a comparison against GRU and LSTM. 2021 Energy. 227 -
- Lotfipoor, A. ; Patidar, S. ; Jenkins, D.P. Deep neural network with empirical mode decomposition and Bayesian optimisation for residential load forecasting. 2024 Expert Syst Appl. 237 -
Paper not yet in RePEc: Add citation now
Lv, S.-X. ; Wang, L. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. 2022 Appl Energy. 311 -
- Ma, X. ; Jin, Y. ; Dong, Q. A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting. 2017 Appl Soft Comput. 54 296-312
Paper not yet in RePEc: Add citation now
Moreno, S.R. ; Mariani, V.C. ; Coelho, L.D.S. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian northeast. 2021 Renew Energy. 164 1508-1526
Naik, J. ; Dash, P.K. ; Dhar, S. A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based multi-kernel robust ridge regression. 2019 Renew Energy. 136 701-731
- Neshat, M. ; Majidi Nezhad, M. ; Mirjalili, S. ; Piras, G. ; Garcia, D.A. Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North Aegean Islands case studies. 2022 Energy Convers Manag. 259 -
Paper not yet in RePEc: Add citation now
Neshat, M. ; Nezhad, M.M. ; Abbasnejad, E. ; Mirjalili, S. ; Groppi, D. ; Heydari, A. Wind turbine power output prediction using a new hybrid neuro-evolutionary method. 2021 Energy. 229 -
- Noorollahi, Y. ; Jokar, M.A. ; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. 2016 Energy Convers Manag. 115 17-25
Paper not yet in RePEc: Add citation now
- Peng, T. ; Zhou, J. ; Zhang, C. ; Zheng, Y. Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine. 2017 Energy Convers Manag. 153 589-602
Paper not yet in RePEc: Add citation now
Qian, Z. ; Pei, Y. ; Zareipour, H. ; Chen, N. A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. 2019 Appl Energy. 235 939-953
Qu, Z. ; Mao, W. ; Zhang, K. ; Zhang, W. ; Li, Z. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. 2019 Renew Energy. 133 919-929
- Quilty, J. ; Adamowski, J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. 2018 J Hydrol. 563 336-353
Paper not yet in RePEc: Add citation now
- Ren, Y. ; Suganthan, P.N. ; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. 2016 IEEE Trans Neural Netw Learning Syst. 27 1793-1798
Paper not yet in RePEc: Add citation now
Shi, J. ; Teh, J. Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion. 2024 Appl Energy. 353 -
- Sibtain, M. ; Bashir, H. ; Nawaz, M. ; Hameed, S. ; Imran Azam, M. ; Li, X. A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network. 2022 Energy Convers Manag. 263 -
Paper not yet in RePEc: Add citation now
Tascikaraoglu, A. ; Sanandaji, B.M. ; Poolla, K. ; Varaiya, P. Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using wavelet transform. 2016 Appl Energy. 165 735-747
- Wang, L. ; Li, X. ; Bai, Y. Short-term wind speed prediction using an extreme learning machine model with error correction. 2018 Energy Convers Manag. 162 239-250
Paper not yet in RePEc: Add citation now
- Wang, X. ; Yu, Q. ; Yang, Y. Short-term wind speed forecasting using variational mode decomposition and support vector regression. 2018 J Intell Fuzzy Syst. 34 3811-3820
Paper not yet in RePEc: Add citation now
Wu, H. ; Meng, K. ; Fan, D. ; Zhang, Z. ; Liu, Q. Multistep short-term wind speed forecasting using transformer. 2022 Energy. 261 -
Xiao, Y. ; Wang, X. ; Wang, J. ; Zhang, H. An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA. 2021 Technol Forecast Soc Change. 166 -
Xu, L. ; Ou, Y. ; Cai, J. ; Wang, J. ; Fu, Y. ; Bian, X. Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition. 2023 Renew Energy. 216 -
- Yamasaki, M. ; Freire, R.Z. ; Seman, L.O. ; Stefenon, S.F. ; Mariani, V.C. ; Dos Santos, Coelho L. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting. 2024 Int J Electr Power Energy Syst. 155 -
Paper not yet in RePEc: Add citation now
- Yan, X. ; Liu, Y. ; Xu, Y. ; Jia, M. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. 2020 Energy Convers Manag. 225 -
Paper not yet in RePEc: Add citation now
Yang, D. ; Guo, J. ; Li, Y. ; Sun, S. ; Wang, S. Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach. 2023 Energy. 263 -
- Yang, H.-F. ; Chen, Y.-P.P. Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods. 2019 Artif Intell. 277 -
Paper not yet in RePEc: Add citation now
Zhang, C. ; Ma, H. ; Hua, L. ; Sun, W. ; Nazir, M.S. ; Peng, T. An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction. 2022 Energy. 254 -
- Zhang, D. ; Peng, X. ; Pan, K. ; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. 2019 Energy Convers Manag. 180 338-357
Paper not yet in RePEc: Add citation now
- Zhang, G. ; Liu, D. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting. 2020 Energy Convers Manag. 226 -
Paper not yet in RePEc: Add citation now
Zhang, G. ; Zhang, Y. ; Wang, H. ; Liu, D. ; Cheng, R. ; Yang, D. Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network. 2024 Energy. 288 -
Zhang, J. ; Draxl, C. ; Hopson, T. ; Monache, L.D. ; Vanvyve, E. ; Hodge, B.-M. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. 2015 Appl Energy. 156 528-541
- Zhang, Y. ; Chen, B. ; Pan, G. ; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. 2019 Energy Convers Manag. 195 180-197
Paper not yet in RePEc: Add citation now