- Amin, A. ; Wang, X.C. ; Alroichdi, A. ; Ibrahim, A. Designing and manufacturing a robot for dry-cleaning PV solar panels. 2023 Int J Energy Res. 2023 -
Paper not yet in RePEc: Add citation now
- Bao XY, Sun ZL, Wang N, Chen YQ. Solar panel segmentation under low contrast condition. In: Chinese control and decision conference. 2019, p. 1091–6.
Paper not yet in RePEc: Add citation now
- Bengio Y, Frasconi P, Simard PY. The problem of learning long-term dependencies in recurrent networks. In: IEEE international conference on neural networks. 1993.
Paper not yet in RePEc: Add citation now
- Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning Phrase Representations using RNN Encoder—-ecoder for Statistical Machine Translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing. 2014, p. 1724–34.
Paper not yet in RePEc: Add citation now
Deb, D. ; Brahmbhatt, N.L. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. 2018 Renew Sustain Energy Rev. 82 3306-3313
- Deceglie, M.G. ; Micheli, L. ; Muller, M. Quantifying soiling loss directly from PV yield. 2018 IEEE J Photovolt. 8 547-551
Paper not yet in RePEc: Add citation now
- Elman, Jeffrey L. Finding structure in time. 1990 Cogn Sci. 14 179-211
Paper not yet in RePEc: Add citation now
- Elsayed N, Maida AS, Bayoumi M. Gated Recurrent Neural Networks Empirical Utilization for Time Series Classification. In: 2019 International conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data. 2019, p. 1207–10.
Paper not yet in RePEc: Add citation now
Fernández-Solas, A. ; Montes-Romero, J. ; Micheli, L. Estimation of soiling losses in photovoltaic modules of different technologies through analytical methods. 2022 Energy. 244 -
- Gao Y, Beijbom O, Zhang N, Darrell T. Compact Bilinear Pooling. In: IEEE conference on computer vision and pattern recognition. 2016, p. 317–26.
Paper not yet in RePEc: Add citation now
Gao, Y. ; Miyata, S. ; Akashi, Y. How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method. 2023 Appl Energy. 348 -
- Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. In: 9th international conference on artificial neural networks. 1999, p. 850–5.
Paper not yet in RePEc: Add citation now
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
Paper not yet in RePEc: Add citation now
Hong, Y.Y. ; Pula, R.A. Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network. 2022 Energy. 246 -
- International Energy Agency-Photovoltaic Power Systems, Photovoltaic power systems programme annual report 2023. 2023 :
Paper not yet in RePEc: Add citation now
- Jordan, Michael I. Serial order: A parallel distributed processing approach. 1986 En : ICS report 8604. :
Paper not yet in RePEc: Add citation now
- Kabir, E. ; Kumar, P. ; Kumar, S. Solar energy: Potential and future prospects. 2018 Renew Sustain Energy Rev. 82 894-900
Paper not yet in RePEc: Add citation now
- Lin TY, RoyChowdhury A, Maji S. Bilinear CNN Models for Fine-Grained Visual Recognition. In: IEEE international conference on computer vision. 2015, p. 1449–57.
Paper not yet in RePEc: Add citation now
- Maitanova, N. ; Telle, J.-S. ; Hanke, B. A machine learning approach to low-cost photovoltaic power prediction based on publicly available weather reports. 2020 Energies. 13 735-
Paper not yet in RePEc: Add citation now
- Mehta S, Azad AP, Chemmengath SA, Raykar V, Kalyanaraman S. DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via Fully Convolutional Networks for Solar Panels. In: IEEE winter conference on applications of computer vision. 2018, p. 333–42.
Paper not yet in RePEc: Add citation now
Mithhu, M.M.H. ; Rima, T.A. ; Khan, M.R. Global analysis of optimal cleaning cycle and profit of soiling affected solar panels. 2021 Appl Energy. 285 -
- NVIDIA, NVIDIA jetson orin. 2023 :
Paper not yet in RePEc: Add citation now
- Qian, T. ; Ming, W. ; Shao, C. An edge intelligence-based framework for online scheduling of soft open points with energy storage. 2024 IEEE Trans Smart Grid. 15 2934-2945
Paper not yet in RePEc: Add citation now
- Ramachandram, D. ; Taylor, G.W. Deep multimodal learning: A survey on recent advances and trends. 2017 IEEE Signal Process Mag. 34 96-108
Paper not yet in RePEc: Add citation now
Shahid, F. ; Zameer, A. ; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. 2020 Chaos Solitons Fractals. 140 -
Tan, H.J. ; Guo, Z.L. ; Zhang, H.R. ; Chen, Q. ; Lin, Z.J. ; Chen, Y.T. Enhancing PV panel segmentation in remote sensing images with constraint refinement modules. 2023 Appl Energy. 350 -
Touati, F. ; Al-Hitmi, M.A. ; Chowdhury, N.A. Investigation of solar PV performance under doha weather using a customized measurement and monitoring system. 2016 Renew Energy. 89 564-577
- Wei, X. ; Zhang, L.L. ; Yang, H.Q. ; Zhang, L.M. ; Yao, Y.P. Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. 2021 Geosci Front. 12 453-467
Paper not yet in RePEc: Add citation now
- Yang, M. ; Javed, W. ; Guo, B. Estimating PV soiling loss using panel images and a feature-based regression model. 2024 IEEE J Photovolt. 14 661-668
Paper not yet in RePEc: Add citation now
- Zhang, W. ; Archana, V. ; Gandhi, O. SoilingEdge: PV soiling power loss estimation at the edge using surveillance cameras. 2024 IEEE Trans Sustain Energy. 15 556-566
Paper not yet in RePEc: Add citation now
- Zhang, W. ; Liu, S. ; Gandhi, O. ; Rodríguez-Gallegos, C.D. ; Quan, H. ; Srinivasan, D. Deep-learning-based probabilistic estimation of solar PV soiling loss. 2021 IEEE Trans Sustain Energy. 12 2436-2444
Paper not yet in RePEc: Add citation now
Zhu, J. ; Li, M. ; Luo, L. Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction. 2023 Renew Energy. 208 141-151