Abadie, A. ; Diamond, A. ; Hainmueller, J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. 2010 J. Amer. Statist. Assoc.. 105 493-505
Ai, C. ; Chen, X. Efficient estimation of models with conditional moment restrictions containing unknown functions. 2003 Econometrica. 71 1795-1843
Ai, C. ; Chen, X. Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables. 2007 J. Econometrics. 141 5-43
Ai, C. ; Chen, X. The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions. 2012 J. Econometrics. 170 442-457
- Angrist, J.D. ; Imbens, G.W. ; Rubin, D.B. Identification of causal effects using instrumental variables. 1996 J. Amer. Statist. Assoc.. 91 444-455
Paper not yet in RePEc: Add citation now
- Ansuini, A. ; Laio, A. ; Macke, J.H. ; Zoccolan, D. Intrinsic dimension of data representations in deep neural networks. 2019 En : Advances in Neural Information Processing Systems, Vol. 32. :
Paper not yet in RePEc: Add citation now
- Balakrishnan, S. ; Kennedy, E.H. ; Wasserman, L. The fundamental limits of structure-agnostic functional estimation. 2023 :
Paper not yet in RePEc: Add citation now
Bang, H. ; Robins, J.M. Doubly robust estimation in missing data and causal inference models. 2005 Biometrics. 61 962-973
Belloni, A. ; Chernozhukov, V. ; Chetverikov, D. ; Kato, K. Some new asymptotic theory for least squares series: Pointwise and uniform results. 2015 J. Econometrics. 186 345-366
Bhattacharya, R.N. ; Ghosh, J.K. A class of U-statistics and asymptotic normality of the number of k-clusters. 1992 J. Multivariate Anal.. 43 300-330
- Bradic, J. ; Chernozhukov, V. ; Newey, W.K. ; Zhu, Y. Minimax semiparametric learning with approximate sparsity. 2019 :
Paper not yet in RePEc: Add citation now
Bradic, J. ; Wager, S. ; Zhu, Y. Sparsity double robust inference of average treatment effects. 2019 :
- Breunig, C. ; Chen, X. Adaptive, rate-optimal hypothesis testing in nonparametric IV models. 2020 :
Paper not yet in RePEc: Add citation now
- Breunig, C. ; Chen, X. Simple adaptive estimation of quadratic functionals in nonparametric IV models. 2019 En : Foundations of Modern Statistics: Festschrift in Honor of Vladimir Spokoiny, Berlin, Germany, November 6–8, 2019, Moscow, Russia, November 30, 2019. Springer:
Paper not yet in RePEc: Add citation now
Cattaneo, M.D. ; Jansson, M. Kernel-based semiparametric estimators: Small bandwidth asymptotics and bootstrap consistency. 2018 Econometrica. 86 955-995
Cattaneo, M.D. ; Jansson, M. ; Ma, X. Two-step estimation and inference with possibly many included covariates. 2019 Rev. Econom. Stud.. 86 1095-1122
Cattaneo, M.D. ; Jansson, M. ; Newey, W.K. Inference in linear regression models with many covariates and heteroscedasticity. 2018 J. Amer. Statist. Assoc.. 113 1350-1361
Chen, J. ; Chen, X. ; Tamer, E. Efficient estimation of average derivatives in NPIV models: simulation comparisons of neural network estimators. 2023 J. Econometrics. 235 1848-1875
Chen, X. Large sample sieve estimation of semi-nonparametric models. 2007 Handb. Econom.. 6 5549-5632
Chen, X. ; Christensen, T. Optimal uniform convergence rates for sieve nonparametric instrumental variables regression. 2013 :
Chen, X. ; Christensen, T.M. Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression. 2018 Quant. Econ.. 9 39-84
Chen, X. ; Hong, H. ; Tamer, E. Measurement error models with auxiliary data. 2005 Rev. Econom. Stud.. 72 343-366
- Chen, X. ; Hong, H. ; Tarozzi, A. Semiparametric efficiency in GMM models with auxiliary data. 2008 Ann. Statist.. 36 808-843
Paper not yet in RePEc: Add citation now
Chen, X. ; Liao, Z. Sieve semiparametric two-step GMM under weak dependence. 2015 J. Econometrics. 189 163-186
- Chen, X. ; Liu, Y. ; Ma, S. ; Zhang, Z. Casual inference of general treatment effects using neural networks with a diverging number of confounders. 2020 :
Paper not yet in RePEc: Add citation now
Chen, X. ; Qiu, Y.J.J. Methods for nonparametric and semiparametric regressions with endogeneity: A gentle guide. 2016 Annu. Rev. Econ.. 8 259-290
Chernozhukov, V. ; Chetverikov, D. ; Demirer, M. ; Duflo, E. ; Hansen, C. ; Newey, W. ; Robins, J. Double/debiased machine learning for treatment and structural parameters. 2018 Econom. J.. 21 C1-C68
Chernozhukov, V. ; Demirer, M. ; Duflo, E. ; Fernandez-Val, I. Generic machine learning inference on heterogeneous treatment effects in randomized experiments, with an application to immunization in India. 2018 National Bureau of Economic Research:
Chernozhukov, V. ; Escanciano, J.C. ; Ichimura, H. ; Newey, W.K. ; Robins, J.M. Locally robust semiparametric estimation. 2022 Econometrica. 90 1501-1535
Chernozhukov, V. ; Newey, W.K. ; Singh, R. Automatic debiased machine learning of causal and structural effects. 2022 Econometrica. 90 967-1027
Chernozhukov, V. ; Newey, W.K. ; Singh, R. Debiased machine learning of global and local parameters using regularized Riesz representers. 2022 Econom. J.. 25 576-601
- Cui, Y. ; Pu, H. ; Shi, X. ; Miao, W. ; Tchetgen Tchetgen, E. Semiparametric proximal causal inference. 2023 J. Amer. Statist. Assoc.. -
Paper not yet in RePEc: Add citation now
- Damian, A. ; Lee, J. ; Soltanolkotabi, M. Neural networks can learn representations with gradient descent. 2022 PMLR:
Paper not yet in RePEc: Add citation now
Farrell, M.H. Robust inference on average treatment effects with possibly more covariates than observations. 2015 J. Econometrics. 189 1-23
Farrell, M.H. ; Liang, T. ; Misra, S. Deep neural networks for estimation and inference. 2021 Econometrica. 89 181-213
- Ha, W. ; Singh, C. ; Lanusse, F. ; Upadhyayula, S. ; Yu, B. Adaptive wavelet distillation from neural networks through interpretations. 2021 Adv. Neural Inf. Process. Syst.. 34 20669-20682
Paper not yet in RePEc: Add citation now
Ichimura, H. ; Newey, W.K. The influence function of semiparametric estimators. 2022 Quant. Econ.. 13 29-61
Jiang, K. ; Mukherjee, R. ; Sen, S. ; Sur, P. A new central limit theorem for the augmented IPW estimator: Variance inflation, cross-fit covariance and beyond. 2022 :
Jochmans, K. Heteroscedasticity-robust inference in linear regression models with many covariates. 2022 J. Amer. Statist. Assoc.. 117 887-896
- Kennedy, E.H. Towards optimal doubly robust estimation of heterogeneous causal effects. 2020 :
Paper not yet in RePEc: Add citation now
- Kennedy, E.H. ; Balakrishnan, S. ; Robins, J.M. ; Wasserman, L. Minimax rates for heterogeneous causal effect estimation. 2022 :
Paper not yet in RePEc: Add citation now
- Kennedy, E.H. ; Balakrishnan, S. ; Wasserman, L. Discussion of “on nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning”. 2020 Statist. Sci.. 35 540-544
Paper not yet in RePEc: Add citation now
- Kline, P. ; Saggio, R. ; Sølvsten, M. Leave-out estimation of variance components. 2020 Econometrica. 88 1859-1898
Paper not yet in RePEc: Add citation now
- Koltchinskii, V. Estimation of smooth functionals of covariance operators: Jackknife bias reduction and bounds in terms of effective rank. 2022 :
Paper not yet in RePEc: Add citation now
- Kompa, B. ; Bellamy, D.R. ; Kolokotrones, T. ; Robins, J.M. ; Beam, A.L. Deep learning methods for proximal inference via maximum moment restriction. 2022 Adv. Neural Inf. Process. Syst.. 36 -
Paper not yet in RePEc: Add citation now
Li, L. ; Tchetgen, E.T. ; van der Vaart, A. ; Robins, J.M. Higher order inference on a treatment effect under low regularity conditions. 2011 Statist. Probab. Lett.. 81 821-828
- Liu, L. ; Li, C. New n-consistent, numerically stable empirical higher-order influence function estimators. 2023 :
Paper not yet in RePEc: Add citation now
Liu, L. ; Mukherjee, R. ; Newey, W.K. ; Robins, J.M. Semiparametric efficient empirical higher order influence function estimators. 2017 :
- Liu, L. ; Mukherjee, R. ; Robins, J.M. On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning. 2020 Statist. Sci.. 35 518-539
Paper not yet in RePEc: Add citation now
- Liu, L. ; Mukherjee, R. ; Robins, J.M. Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning. 2020 Statist. Sci.. 35 545-554
Paper not yet in RePEc: Add citation now
- Liu, L. ; Mukherjee, R. ; Robins, J.M. ; Tchetgen Tchetgen, E. Adaptive estimation of nonparametric functionals. 2021 Journal of Machine Learning Research. 22 1-66
Paper not yet in RePEc: Add citation now
- McGrath, S. ; Mukherjee, R. On undersmoothing and sample splitting for estimating a doubly robust functional. 2022 :
Paper not yet in RePEc: Add citation now
Miao, W. ; Geng, Z. ; Tchetgen Tchetgen, E.J. Identifying causal effects with proxy variables of an unmeasured confounder. 2018 Biometrika. 105 987-993
- Miao, W. ; Shi, X. ; Tchetgen Tchetgen, E. A confounding bridge approach for double negative control inference on causal effects. 2018 :
Paper not yet in RePEc: Add citation now
Newey, W.K. Convergence rates and asymptotic normality for series estimators. 1997 J. Econometrics. 79 147-168
Newey, W.K. Maximum likelihood specification testing and conditional moment tests. 1985 Econometrica. 53 1047-1070
Newey, W.K. Semiparametric efficiency bounds. 1990 J. Appl. Econometrics. 5 99-135
Newey, W.K. The asymptotic variance of semiparametric estimations. 1994 Econometrica. 62 1349-1382
Newey, W.K. ; Hsieh, F. ; Robins, J. Undersmoothing and Bias Corrected Functional Estimation. 1998 Massachusetts Institute of Technology:
Newey, W.K. ; Hsieh, F. ; Robins, J.M. Twicing kernels and a small bias property of semiparametric estimators. 2004 Econometrica. 72 947-962
- Newey, W.K. ; McFadden, D. Large sample estimation and hypothesis testing. 1994 Handb. Econom.. 4 2111-2245
Paper not yet in RePEc: Add citation now
Newey, W.K. ; Powell, J.L. Instrumental variable estimation of nonparametric models. 2003 Econometrica. 71 1565-1578
- Newey, W.K. ; Robins, J.M. Cross-fitting and fast remainder rates for semiparametric estimation. 2018 :
Paper not yet in RePEc: Add citation now
- Ritov, Y. ; Bickel, P.J. ; Gamst, A.C. ; Kleijn, B.J.K. The Bayesian analysis of complex, high-dimensional models: Can it be CODA?. 2014 Statist. Sci.. 29 619-639
Paper not yet in RePEc: Add citation now
- Robins, J. ; Li, L. ; Tchetgen Tchetgen, E. ; van der Vaart, A. Higher order influence functions and minimax estimation of nonlinear functionals. 2008 En : Probability and Statistics: Essays in Honor of David A. Freedman. Institute of Mathematical Statistics:
Paper not yet in RePEc: Add citation now
- Robins, J. ; Tchetgen Tchetgen, E. ; Li, L. ; van der Vaart, A. Semiparametric minimax rates. 2009 Electron. J. Stat.. 3 1305-1321
Paper not yet in RePEc: Add citation now
Robins, J.M. General methodological considerations. 2003 J. Econometrics. 112 89-106
- Robins, J.M. ; Li, L. ; Mukherjee, R. ; Tchetgen Tchetgen, E. ; van der Vaart, A. Minimax estimation of a functional on a structured high-dimensional model. 2017 Ann. Statist.. 45 1951-1987
Paper not yet in RePEc: Add citation now
- Robins, J.M. ; Ritov, Y. Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. 1997 Stat. Med.. 16 285-319
Paper not yet in RePEc: Add citation now
- Robins, J.M. ; Rotnitzky, A. Comments on “Inference for semiparametric models: some questions and an answer”. 2001 Statist. Sinica. 11 920-936
Paper not yet in RePEc: Add citation now
Rotnitzky, A. ; Smucler, E. ; Robins, J.M. Characterization of parameters with a mixed bias property. 2021 Biometrika. 108 231-238
- Scharfstein, D.O. ; Rotnitzky, A. ; Robins, J.M. Rejoinder. 1999 J. Amer. Statist. Assoc.. 94 1135-1146
Paper not yet in RePEc: Add citation now
- Schmidt-Hieber, J. Nonparametric regression using deep neural networks with ReLU activation function. 2020 Ann. Statist.. 48 1875-1897
Paper not yet in RePEc: Add citation now
- Shah, R.D. ; Peters, J. The hardness of conditional independence testing and the generalised covariance measure. 2020 Ann. Statist.. 48 1514-1538
Paper not yet in RePEc: Add citation now
- Shi, X. ; Miao, W. ; Hu, M. ; Tchetgen Tchetgen, E. Theory for identification and inference with synthetic controls: a proximal causal inference framework. 2021 :
Paper not yet in RePEc: Add citation now
- Smucler, E. ; Rotnitzky, A. ; Robins, J.M. A unifying approach for doubly-robust ℓ1 regularized estimation of causal contrasts. 2019 :
Paper not yet in RePEc: Add citation now
Tchetgen Tchetgen, E. ; Li, L. ; Robins, J. ; van der Vaart, A. Minimax estimation of the integral of a power of a density. 2008 Statist. Probab. Lett.. 78 3307-3311
- Tchetgen Tchetgen, E.J. ; Ying, A. ; Cui, Y. ; Shi, X. ; Miao, W. An introduction to proximal causal learning. 2020 :
Paper not yet in RePEc: Add citation now
- van der Vaart, A. Higher order tangent spaces and influence functions. 2014 Statist. Sci.. 29 679-686
Paper not yet in RePEc: Add citation now
- Wanis, K. ; Liu, L. ; Melnitchoukc, N. ; Robins, J.M. Falsification using higher order influence functions for double machine learning estimators of causal effects. 2023 Harvard University:
Paper not yet in RePEc: Add citation now
- Xu, S. ; Liu, L. ; Liu, Z. DeepMed: Semiparametric causal mediation analysis with debiased deep learning. 2022 Adv. Neural Inf. Process. Syst.. 35 28238-28251
Paper not yet in RePEc: Add citation now
- Yadlowsky, S. Explaining practical differences between treatment effect estimators with high dimensional asymptotics. 2022 :
Paper not yet in RePEc: Add citation now