create a website

Interpretable generalized additive neural networks. (2024). Weinzierl, Sven ; Zschech, Patrick ; Kraus, Mathias ; Tschernutter, Daniel.
In: European Journal of Operational Research.
RePEc:eee:ejores:v:317:y:2024:i:2:p:303-316.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 54

References cited by this document

Cocites: 27

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Leveraging interpretable machine learning in intensive care. (2025). Rosenberger, Julian ; Zschech, Patrick ; Kraus, Mathias ; Bohlen, Lasse.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-024-06226-8.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Agarwal, R. ; Melnick, L. ; Frosst, N. ; Zhang, X. ; Lengerich, B. ; Caruana, R. ; Hinton, G.E. Neural additive models: Interpretable machine learning with neural nets. 2021 Curran Associates, Inc:
    Paper not yet in RePEc: Add citation now
  2. Al-Ebbini, L. ; Oztekin, A. ; Sevkli, Z. ; Delen, D. Predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology. 2017 IEEE:
    Paper not yet in RePEc: Add citation now
  3. Angwin, J. ; Larson, J. ; Mattu, S. ; Kirchner, L. Machine bias. 2016 Auerbach Publications:
    Paper not yet in RePEc: Add citation now
  4. Badirli, S., Liu, X., Xing, Z., Bhowmik, A., Doan, K., & Keerthi, S. S. Gradient boosting neural networks: GrowNet. arXiv:2002.07971[cs, stat].
    Paper not yet in RePEc: Add citation now
  5. Barredo Arrieta, A. ; Díaz-Rodríguez, N. ; Del Ser, J. ; Bennetot, A. ; Tabik, S. ; Barbado, A. ; Herrera, F. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. 2020 Information Fusion. 58 82-115
    Paper not yet in RePEc: Add citation now
  6. Bastos, J.A. ; Matos, S.M. Explainable models of credit losses. 2022 European Journal of Operational Research. 301 386-394

  7. Borchert, P. ; Coussement, K. ; De Caigny, A. ; De Weerdt, J. Extending business failure prediction models with textual website content using deep learning. 2023 European Journal of Operational Research. 306 348-357

  8. Carbonneau, R. ; Laframboise, K. ; Vahidov, R. Application of machine learning techniques for supply chain demand forecasting. 2008 European Journal of Operational Research. 184 1140-1154

  9. Caruana, R. ; Lou, Y. ; Gehrke, J. ; Koch, P. ; Sturm, M. ; Elhadad, N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. 2015 :
    Paper not yet in RePEc: Add citation now
  10. Chang, C.-H. ; Tan, S. ; Lengerich, B. ; Goldenberg, A. ; Caruana, R. How interpretable and trustworthy are GAMs?. 2021 ACM: Virtual Event Singapore
    Paper not yet in RePEc: Add citation now
  11. Chen, C. ; Lin, K. ; Rudin, C. ; Shaposhnik, Y. ; Wang, S. ; Wang, T. A holistic approach to interpretability in financial lending: Models, visualizations, and summary-explanations. 2022 Decision Support Systems. 152 113647-
    Paper not yet in RePEc: Add citation now
  12. Chen, T. ; Guestrin, C. Xgboost: A scalable tree boosting system. 2016 :
    Paper not yet in RePEc: Add citation now
  13. Chou, P. ; Chuang, H.H.-C. ; Chou, Y.-C. ; Liang, T.-P. Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. 2022 European Journal of Operational Research. 296 635-651

  14. Ciocan, D.F. ; Mišić, V.V. Interpretable optimal stopping. 2022 Management Science. 68 1616-1638

  15. Coussement, K. ; Benoit, D.F. Interpretable data science for decision making. 2021 Decision Support Systems. 150 113664-
    Paper not yet in RePEc: Add citation now
  16. Coussement, K. ; Benoit, D.F. ; Van den Poel, D. Improved marketing decision making in a customer churn prediction context using generalized additive models. 2010 Expert Systems with Applications. 37 2132-2143

  17. Coussement, K. ; Benoit, D.F. ; Van den Poel, D. Preventing customers from running away! Exploring generalized additive models for customer churn prediction. 2015 Springer International Publishing: Cham
    Paper not yet in RePEc: Add citation now
  18. De Bock, K.W. ; Coussement, K. ; Van den Poel, D. Ensemble classification based on generalized additive models. 2010 Computational Statistics and Data Analysis. 54 1535-1546

  19. De Caigny, A. ; Coussement, K. ; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. 2018 European Journal of Operational Research. 269 760-772

  20. Demšar, J. Statistical comparisons of classifiers over multiple data sets. 2006 The Journal of Machine Learning Research. 7 1-30
    Paper not yet in RePEc: Add citation now
  21. Du, M. ; Liu, N. ; Hu, X. Techniques for interpretable machine learning. 2019 Communications of the ACM. 63 68-77
    Paper not yet in RePEc: Add citation now
  22. Dumitrescu, E. ; Hué, S. ; Hurlin, C. ; Tokpavi, S. Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects. 2022 European Journal of Operational Research. 297 1178-1192

  23. FICO (2018). Explainable machine learning challenge. https://community.fico.com/s/explainable-machine-learning-challenge.
    Paper not yet in RePEc: Add citation now
  24. Friedman, J.H. ; Stuetzle, W. Projection pursuit regression. 1981 Journal of the American Statistical Association. 76 817-823
    Paper not yet in RePEc: Add citation now
  25. García, S. ; Fernández, A. ; Luengo, J. ; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. 2010 Information Sciences. 180 2044-2064
    Paper not yet in RePEc: Add citation now
  26. Hastie, T. ; Tibshirani, R. Generalized additive models. 1986 Statistical Science. 1 -
    Paper not yet in RePEc: Add citation now
  27. Huang, G.-B. ; Zhu, Q.-Y. ; Siew, C.-K. Extreme learning machine: Theory and applications. 2006 Neurocomputing. 70 489-501
    Paper not yet in RePEc: Add citation now
  28. Imran, A.A. ; Amin, M.N. ; Islam Rifat, M.R. ; Mehreen, S. Deep neural network approach for predicting the productivity of garment employees. 2019 :
    Paper not yet in RePEc: Add citation now
  29. Janiesch, C. ; Zschech, P. ; Heinrich, K. Machine learning and deep learning. 2021 Electronic Markets. 31 685-695

  30. Kraus, M. ; Feuerriegel, S. ; Oztekin, A. Deep learning in business analytics and operations research: Models, applications and managerial implications. 2020 European Journal of Operational Research. 281 628-641

  31. Lou, Y. ; Caruana, R. ; Gehrke, J. Intelligible models for classification and regression. 2012 :
    Paper not yet in RePEc: Add citation now
  32. Lou, Y. ; Caruana, R. ; Gehrke, J. ; Hooker, G. Accurate intelligible models with pairwise interactions. 2013 ACM: Chicago Illinois USA
    Paper not yet in RePEc: Add citation now
  33. Lundberg, S.M. ; Erion, G. ; Chen, H. ; DeGrave, A. ; Prutkin, J.M. ; Nair, B. ; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. 2020 Nature Machine Intelligence. 2 56-67
    Paper not yet in RePEc: Add citation now
  34. Maldonado, S. ; Vairetti, C. ; Fernandez, A. ; Herrera, F. FW-SMOTE: A feature-weighted oversampling approach for imbalanced classification. 2022 Pattern Recognition. 124 108511-
    Paper not yet in RePEc: Add citation now
  35. Martens, D. Data science ethics: Concepts, techniques, and cautionary tales. 2022 Oxford University Press:
    Paper not yet in RePEc: Add citation now
  36. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. 2019 Artificial Intelligence. 267 1-38
    Paper not yet in RePEc: Add citation now
  37. Mitrović, S. ; Baesens, B. ; Lemahieu, W. ; De Weerdt, J. On the operational efficiency of different feature types for telco churn prediction. 2018 European Journal of Operational Research. 267 1141-1155

  38. Molnar, C. ; Casalicchio, G. ; Bischl, B. Interpretable machine learning - a brief history, state-of-the-art and challenges. 2020 En : Koprinska, I. ECML PKDD 2020 workshops communications in computer and information science. Springer International Publishing: Cham
    Paper not yet in RePEc: Add citation now
  39. Neumann, K. ; Steil, J.J. Batch intrinsic plasticity for extreme learning machines. 2011 Springer:
    Paper not yet in RePEc: Add citation now
  40. Nori, H., Jenkins, S., Koch, P., & Caruana, R. Interpretml: A unified framework for machine learning interpretability. arXiv:1909.09223.
    Paper not yet in RePEc: Add citation now
  41. Piri, S. ; Delen, D. ; Liu, T. ; Zolbanin, H.M. A data analytics approach to building a clinical decision support system for diabetic retinopathy: Developing and deploying a model ensemble. 2017 Decision Support Systems. 101 12-27
    Paper not yet in RePEc: Add citation now
  42. Rao, A., & Greenstein, B. (2022). PwC 2022 AI business survey. https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-business-survey.html.
    Paper not yet in RePEc: Add citation now
  43. Reddy, B.K. ; Delen, D. ; Agrawal, R.K. Predicting and explaining inflammation in Crohn’s disease patients using predictive analytics methods and electronic medical record data. 2019 Health Informatics Journal. 25 1201-1218
    Paper not yet in RePEc: Add citation now
  44. Ribeiro, M.T. ; Singh, S. ; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. 2016 ACM Press: San Francisco, California, USA
    Paper not yet in RePEc: Add citation now
  45. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. 2019 Nature Machine Intelligence. 1 206-215
    Paper not yet in RePEc: Add citation now
  46. Rudin, C. ; Radin, J. Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. 2019 Harvard Data Science Review. 1 -
    Paper not yet in RePEc: Add citation now
  47. Schaul, T. ; Zhang, S. ; LeCun, Y. No more pesky learning rates. 2013 :
    Paper not yet in RePEc: Add citation now
  48. Senoner, J. ; Netland, T. ; Feuerriegel, S. Using explainable artificial intelligence to improve process quality: Evidence from semiconductor manufacturing. 2022 Management Science. 68 5704-5723

  49. Vaughan, J., Sudjianto, A., Brahimi, E., Chen, J., & Nair, V. N. Explainable neural networks based on additive index models. arXiv:1806.01933.
    Paper not yet in RePEc: Add citation now
  50. Wang, C. ; Han, B. ; Patel, B. ; Rudin, C. In pursuit of interpretable, fair and accurate machine learning for criminal recidivism prediction. 2023 Journal of Quantitative Criminology. 39 519-581
    Paper not yet in RePEc: Add citation now
  51. Xu, Z., Dai, A. M., Kemp, J., & Metz, L. Learning an adaptive learning rate schedule. arXiv preprint arXiv:1909.09712.
    Paper not yet in RePEc: Add citation now
  52. Yang, Z. ; Zhang, A. ; Sudjianto, A. Enhancing explainability of neural networks through architecture constraints. 2021 IEEE Transactions on Neural Networks and Learning Systems. 32 2610-2621
    Paper not yet in RePEc: Add citation now
  53. Yang, Z. ; Zhang, A. ; Sudjianto, A. GAMI-net: An explainable neural network based on generalized additive models with structured interactions. 2021 Pattern Recognition. 120 108192-
    Paper not yet in RePEc: Add citation now
  54. Zschech, P. ; Weinzierl, S. ; Hambauer, N. ; Zilker, S. ; Kraus, M. GAM(e) change or not? An evaluation of interpretable machine learning models based on additive model constraints. 2022 :
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. An interpretable system for predicting the impact of COVID-19 government interventions on stock market sectors. (2025). Yang, Cai ; Abedin, Mohammad Zoynul ; Zhang, Hongwei ; Weng, Futian ; Hajek, Petr.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-023-05311-8.

    Full description at Econpapers || Download paper

  2. Class imbalance Bayesian model averaging for consumer loan default prediction: The role of soft credit information. (2025). Abedin, Mohammad Zoynul ; Zhu, Miao ; Weng, Futian ; Hajek, Petr ; Buckle, Mike.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:74:y:2025:i:c:s0275531924005154.

    Full description at Econpapers || Download paper

  3. Life event-based marketing using AI. (2025). Meire, Matthijs ; Hoornaert, Steven ; Coussement, Kristof ; de Caigny, Arno.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:193:y:2025:i:c:s0148296325001729.

    Full description at Econpapers || Download paper

  4. Business cycle and realized losses in the consumer credit industry. (2025). Roccazzella, Francesco ; Vrins, Frdric ; Distaso, Walter.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:323:y:2025:i:3:p:1024-1039.

    Full description at Econpapers || Download paper

  5. A fused large language model for predicting startup success. (2025). Feuerriegel, Stefan ; Maarouf, Abdurahman ; Prllochs, Nicolas.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:322:y:2025:i:1:p:198-214.

    Full description at Econpapers || Download paper

  6. Credit Risk Assessment and Financial Decision Support Using Explainable Artificial Intelligence. (2024). Hameed, Ibrahim A ; Meena, V P ; Bahadur, Jitendra ; Jaraut, Praveen ; Balusamy, Balamurugan ; Grover, Veena ; Chaturvedi, Himakshi ; Nallakaruppan, M K.
    In: Risks.
    RePEc:gam:jrisks:v:12:y:2024:i:10:p:164-:d:1499310.

    Full description at Econpapers || Download paper

  7. Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence. (2024). Ghosh, Indranil ; De, Arijit.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002771.

    Full description at Econpapers || Download paper

  8. Long-horizon predictions of credit default with inconsistent customers. (2024). Zhou, Ying ; Jin, Peng ; Chi, Guotai ; Dong, Bingjie.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006935.

    Full description at Econpapers || Download paper

  9. Interpretable machine learning for creditor recovery rates. (2024). Fabozzi, Frank J ; Nazemi, Abdolreza.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:164:y:2024:i:c:s0378426624001043.

    Full description at Econpapers || Download paper

  10. Explainable real-time predictive analytics on employee workload in digital railway control rooms. (2024). Verschelde, Marijn ; Sobrie, Leon ; Roets, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:437-448.

    Full description at Econpapers || Download paper

  11. What makes accidents severe! explainable analytics framework with parameter optimization. (2024). Moqbel, Murad ; Topuz, Kazim ; Abdulrashid, Ismail ; Ahmed, Abdulaziz.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:425-436.

    Full description at Econpapers || Download paper

  12. Feature importance in the age of explainable AI: Case study of detecting fake news & misinformation via a multi-modal framework. (2024). Taylor, James W ; Kumar, Ajay.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:401-413.

    Full description at Econpapers || Download paper

  13. Towards the development of an explainable e-commerce fake review index: An attribute analytics approach. (2024). Ahmed, Wasim ; Das, Ronnie ; Filieri, Raffaele ; Hardey, Mariann ; Sharma, Kshitij ; Apostolidis, Chrysostomos ; Zhang, Ziqi ; Dwivedi, Yogesh K.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:382-400.

    Full description at Econpapers || Download paper

  14. 360 Degrees rumor detection: When explanations got some explaining to do. (2024). Van den Poel, Dirk ; Meire, Matthijs ; Bogaert, Matthias ; Schetgen, Lisa ; Janssens, Bram.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:366-381.

    Full description at Econpapers || Download paper

  15. Explainability through uncertainty: Trustworthy decision-making with neural networks. (2024). Benoit, Dries F ; Thuy, Arthur.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:330-340.

    Full description at Econpapers || Download paper

  16. Interpretable generalized additive neural networks. (2024). Weinzierl, Sven ; Zschech, Patrick ; Kraus, Mathias ; Tschernutter, Daniel.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:303-316.

    Full description at Econpapers || Download paper

  17. Supervised feature compression based on counterfactual analysis. (2024). Piccialli, Veronica ; Morales, Dolores Romero ; Salvatore, Cecilia.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:273-285.

    Full description at Econpapers || Download paper

  18. Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda. (2024). de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Sowiski, Roman ; de Caigny, Arno ; Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:249-272.

    Full description at Econpapers || Download paper

  19. Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making. (2024). Maldonado, Sebastian ; Karmy, Juan Pablo ; Aranguiz, Ignacio ; Vairetti, Carla ; Leal, Alonso.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:312:y:2024:i:3:p:1108-1118.

    Full description at Econpapers || Download paper

  20. Machine learning in bank merger prediction: A text-based approach. (2024). Leledakis, George ; Katsafados, Apostolos ; Fergadiotis, Manos ; Androutsopoulos, Ion ; Pyrgiotakis, Emmanouil G.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:312:y:2024:i:2:p:783-797.

    Full description at Econpapers || Download paper

  21. KACDP: A Highly Interpretable Credit Default Prediction Model. (2024). Zhao, Jin ; Liu, Kun.
    In: Papers.
    RePEc:arx:papers:2411.17783.

    Full description at Econpapers || Download paper

  22. Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda. (2023). Boute, Robert N ; Weber, Richard ; Kraus, Mathias ; Oskarsdottir, Maria ; Coussement, Kristof ; de Bock, Koen W ; Verbeke, Wouter ; Delen, Dursun ; Choi, Tsan-Ming ; Martens, David ; Lessmann, Stefan ; Vairetti, Carla ; Maldonado, Sebastian ; Baesens, Bart ; Slowiski, Roman ; de Caigny, Arno.
    In: Post-Print.
    RePEc:hal:journl:hal-04219546.

    Full description at Econpapers || Download paper

  23. Interpretable high-stakes decision support system for credit default forecasting. (2023). Wang, Yong ; Zhang, Xuantao ; Sun, Weixin ; Li, Minghao.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:196:y:2023:i:c:s0040162523005103.

    Full description at Econpapers || Download paper

  24. Forecasting for regulatory credit loss derived from the COVID-19 pandemic: A machine learning approach. (2023). Fernandez-Aguado, Pilar Gomez ; Gonzalez, Marta Ramos ; Urea, Antonio Partal.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531923000338.

    Full description at Econpapers || Download paper

  25. Navigational guidance – A deep learning approach. (2023). Luo, YU.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:310:y:2023:i:3:p:1179-1191.

    Full description at Econpapers || Download paper

  26. Popularity, face and voice: Predicting and interpreting livestreamers retail performance using machine learning techniques. (2023). Xiong, Xiong ; Su, LI ; Yang, Fan.
    In: Papers.
    RePEc:arx:papers:2310.19200.

    Full description at Econpapers || Download paper

  27. Explainable AI for Credit Assessment in Banks. (2022). Westgaard, Sjur ; de Lange, Petter Eilif ; Vennerod, Christian Bakke ; Melsom, Borger.
    In: JRFM.
    RePEc:gam:jjrfmx:v:15:y:2022:i:12:p:556-:d:986356.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 00:32:24 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.