Ahmad, W. On the dynamic dependence and investment performance of crude oil and clean energy stocks. 2017 Res. Int. Bus. Financ.. 42 376-389
- Ali, S. ; Khan, H. ; Shah, I. ; Butt, M.M. ; Suhail, M. A comparison of some new and old robust ridge regression estimators. 2021 Commun. Stat. Simul. Comput.. 50 2213-2231
Paper not yet in RePEc: Add citation now
Aloui, R. ; Gupta, R. ; Miller, S.M. Uncertainty and crude oil returns. 2016 Energy Econ.. 55 92-100
Alquist, R. ; Kilian, L. ; Vigfusson, R.J. Forecasting the price of oil. 2013 En : Handbook of Economic Forecasting. Elsevier:
- Alshanbari, H.M. ; Iftikhar, H. ; Khan, F. ; Rind, M. ; Ahmad, Z. ; El-Bagoury, A.A.A.H. On the implementation of the artificial neural network approach for forecasting different healthcare events. 2023 Diagnostics. 13 1310-
Paper not yet in RePEc: Add citation now
Athey, S. ; Imbens, G.W. Machine learning methods that economists should know about. 2019 Ann. Rev. Econ.. 11 685-725
Baumeister, C. ; Guérin, P. ; Kilian, L. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. 2015 Int. J. Forecast.. 31 238-252
Baumeister, C. ; Kilian, L. Forecasting the real price of oil in a changing world: a forecast combination approach. 2015 J. Bus. Econ. Stat.. 33 338-351
Baumeister, C. ; Kilian, L. Real-time analysis of oil price risks using forecast scenarios. 2014 IMF Econ. Rev.. 62 119-145
Baumeister, C. ; Kilian, L. What central bankers need to know about forecasting oil prices. 2014 Int. Econ. Rev.. 55 869-889
- Becker, N. ; Toedt, G. ; Lichter, P. ; Benner, A. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data. 2011 BMC Bioinformatics. 12 1-13
Paper not yet in RePEc: Add citation now
Belaïd, F. ; Roubaud, D. ; Galariotis, E. Features of residential energy consumption: evidence from France using an innovative multilevel modelling approach. 2019 Energy Policy. 125 277-285
- Bellec, P.C. Out-of-Sample Error Estimate for Robust M-Estimators with Convex Penalty. 2020 :
Paper not yet in RePEc: Add citation now
- Bellec, P.C. ; Shen, Y. ; Zhang, C.H. Asymptotic normality of robust M-estimators with convex penalty. 2022 Electron. J. Stat.. 16 5591-5622
Paper not yet in RePEc: Add citation now
- Bloznelis, D. Management of short-term price uncertainty in the salmon spot market. 2016 En : Doctoral thesis, Norwegian University of. Life Sci. :
Paper not yet in RePEc: Add citation now
Bloznelis, D. Short-term salmon price forecasting. 2018 J. Forecast.. 37 151-169
Cai, Y. ; Zhang, D. ; Chang, T. ; Lee, C.C. Macroeconomic outcomes of OPEC and non-OPEC oil supply shocks in the euro area. 2022 Energy Econ.. 109 -
Campbell, J.Y. ; Thompson, S.B. Predicting excess stock returns out of sample: Can anything beat the historical average?. 2008 Rev. Fin. Stud.. 21 1509-1531
Castle, J.L. ; Doornik, J.A. ; Hendry, D.F. Robust discovery of regression models. 2023 Econometr. Stat.. 26 31-51
- Chang, H.W. ; Chang, T. ; Lee, C.C. Return and volatility connectedness among the BRICS stock and oil markets. 2023 Res. Policy. 86 104241-
Paper not yet in RePEc: Add citation now
Costa, A.B.R. ; Ferreira, P.C.G. ; Gaglianone, W.P. ; Guillén, O.T.C. ; Issler, J.V. ; Lin, Y. Machine learning and oil price point and density forecasting. 2021 Energy Econ.. 102 -
Dawar, I. ; Dutta, A. ; Bouri, E. ; Saeed, T. Crude oil prices and clean energy stock indices: lagged and asymmetric effects with quantile regression. 2021 Renew. Energy. 163 288-299
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 J. Bus. Econ. Stat.. 13 253-263
Fan, J. ; Li, Q. ; Wang, Y. Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions. 2017 J. Royal Stat. Soc. Ser. B Stat. Methodol.. 79 247-
Fan, J. ; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. 2001 J. Am. Stat. Assoc.. 96 1348-1360
- Fan, J. ; Liu, H. ; Sun, Q. ; Zhang, T. I-LAMM for sparse learning: simultaneous control of algorithmic complexity and statistical error. 2018 Ann. Stat.. 46 814-
Paper not yet in RePEc: Add citation now
- Fan, J. ; Lv, J. A selective overview of variable selection in high dimensional feature space. 2010 Stat. Sin.. 20 101-148
Paper not yet in RePEc: Add citation now
Ferrari, D. ; Ravazzolo, F. ; Vespignani, J. Forecasting energy commodity prices: a large global dataset sparse approach. 2021 Energy Econ.. 98 -
Ferrer, R. ; Shahzad, S.J.H. ; López, R. ; Jareño, F. Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. 2018 Energy Econ.. 76 1-20
Garcia, M.G. ; Medeiros, M.C. ; Vasconcelos, G.F. Real-time inflation forecasting with high-dimensional models: the case of Brazil. 2017 Int. J. Forecast.. 33 679-693
- Ghosh, S. On the grouped selection and model complexity of the adaptive elastic net. 2011 Stat. Comput.. 21 451-462
Paper not yet in RePEc: Add citation now
- Gu, S. ; Kelly, B.T. ; Xiu, D. Empirical asset pricing via machine learning. 2019 Chicago Booth Res. Pap.. 18-04 -
Paper not yet in RePEc: Add citation now
- Guo, Q. ; Zeng, D. ; Lee, C.C. Impact of smart city pilot on energy and environmental performance: China-based empirical evidence Sustainable Cities and. 2023 Society. 97 104731-
Paper not yet in RePEc: Add citation now
Hansen, P.R. ; Timmermann, A. Choice of sample split in out-of-sample forecast evaluation. 2012 En : Economics Working Papers ECO2012/10. :
Hao, X. ; Zhao, Y. ; Wang, Y. Forecasting the real prices of crude oil using robust regression models with regularization constraints. 2020 Energy Econ.. 86 -
- Hasanov, F.J. ; Mukhtarov, S. ; Suleymanov, E. The role of renewable energy and total factor productivity in reducing CO2 emissions in Azerbaijan. Fresh insights from a new theoretical framework coupled with autometrics. 2023 Energ. Strat. Rev.. 47 -
Paper not yet in RePEc: Add citation now
- Hastie, T. ; Tibshirani, R. ; Friedman, J.H. ; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009 springer: New York
Paper not yet in RePEc: Add citation now
He, M. ; Zhang, Y. ; Wen, D. ; Wang, Y. Forecasting crude oil prices: a scaled PCA approach. 2021 Energy Econ.. 97 -
- Hendry, D.F. ; Doornik, J.A. Empirical Model Discovery and Theory Evaluation. 2014 MIT Press: Cambridge, Mass
Paper not yet in RePEc: Add citation now
Henriques, I. ; Sadorsky, P. Oil prices and the stock prices of alternative energy companies. 2008 Energy Econ.. 30 998-1010
- Hu, J. ; Huang, J. ; Qiu, F. A group adaptive elastic-net approach for variable selection in high-dimensional linear regression. 2018 SCIENCE CHINA Math.. 61 173-188
Paper not yet in RePEc: Add citation now
- Huber, P.J. Robust estimation of a location parameter. 1964 Ann. Math. Stat.. 35 73-101
Paper not yet in RePEc: Add citation now
- Huber, P.J. Robust regression: asymptotics, conjectures and Monte Carlo. 1973 Ann. Stat.. 799-821
Paper not yet in RePEc: Add citation now
- Huynh, T.L.D. When ‘green’challenges ‘prime’: empirical evidence from government bond markets. 2022 J. Sustain. Finance Invest.. 12 375-388
Paper not yet in RePEc: Add citation now
- James, G. ; Witten, D. ; Hastie, T. ; Tibshirani, R. An Introduction to Statistical Learning. 2013 springer: New York
Paper not yet in RePEc: Add citation now
Jammazi, R. ; Aloui, C. Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling. 2012 Energy Econ.. 34 828-841
- Johansen, S. ; Nielsen, B. An analysis of the indicator saturation estimator as a robust regression estimator. 2009 En : Castle and Shephard. :
Paper not yet in RePEc: Add citation now
Johansen, S. ; Nielsen, B. Asymptotic theory of outlier detection algorithms for linear time series regression models. 2016 Scand. J. Stat.. 43 321-348
Khan, F. ; Urooj, A. ; Khan, S.A. ; Alsubie, A. ; Almaspoor, Z. ; Muhammadullah, S. Comparing the forecast performance of advanced statistical and machine learning techniques using huge big data: evidence from Monte Carlo experiments. 2021 Complexity. 2021 1-11
- Khan, F. ; Urooj, A. ; Khan, S.A. ; Khosa, S.K. ; Muhammadullah, S. ; Almaspoor, Z. Evaluating the performance of feature selection methods using huge big data: a Monte Carlo simulation approach. 2022 Math. Probl. Eng.. 2022 1-10
Paper not yet in RePEc: Add citation now
Kilian, L. ; Vigfusson, R.J. Do oil prices help forecast US real GDP? The role of nonlinearities and asymmetries. 2013 J. Bus. Econ. Stat.. 31 78-93
Krüger, J. ; Ruths Sion, S. Improving Oil Price Forecasts by Sparse VAR Methods. 2019 Darmstadt Discussion Papers in Economics:
Lee, C.C. ; Hussain, J. Energy sustainability under the COVID-19 outbreak: Electricity break-off policy to minimize electricity market crises. 2023 Energy Economics. 125 106870-
Lee, C.C. ; Wang, C.W. ; Hong, P.H. ; Lin, W. Environmental policy stringency and bank risks: does green economy matter?. 2024 Int. Rev. Financ. Anal.. 91 -
Lee, C.C. ; Yuan, Z. Impact of energy poverty on public health: a non-linear study from an international perspective. 2024 World Dev.. 174 -
Lee, C.C. ; Zhao, Y.N. Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI. 2023 Renewable and Sustainable Energy Reviews. 185 113644-
Lee, C.C. ; Zhou, H. ; Xu, C. ; Zhang, X. Dynamic spillover effects among international crude oil markets from the time-frequency perspective. 2023 Res. Policy. 80 -
Li, J. ; Tsiakas, I. Equity premium prediction: the role of economic and statistical constraints. 2017 J. Financ. Mark.. 36 56-75
Li, J. ; Umar, M. ; Huo, J. The spillover effect between Chinese crude oil futures market and Chinese green energy stock market. 2023 Energy Econ.. 119 -
Li, Y. ; Jiang, S. ; Li, X. ; Wang, S. The role of news sentiment in oil futures returns and volatility forecasting: data-decomposition based deep learning approach. 2021 Energy Econ.. 95 -
Liang, C. ; Umar, M. ; Ma, F. ; Huynh, T.L. Climate policy uncertainty and world renewable energy index volatility forecasting. 2022 Technol. Forecast. Soc. Chang.. 182 -
- Liang, J. ; Jia, G. China futures price forecasting based on online search and information transfer. 2022 Data Science and Management. 5 187-198
Paper not yet in RePEc: Add citation now
Liu, M. ; Lee, C.C. Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. 2021 Energy Econ.. 103 -
Liu, M. ; Lee, C.C. Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS. 2022 Res. Policy. 76 -
Liu, M. ; Liu, H.F. ; Lee, C.C. An empirical study on the response of the energy market to the shock from the artificial intelligence industry. 2024 Energy. 288 -
Liu, W. ; Li, Q. An efficient elastic net with regression coefficients method for variable selection of spectrum data. 2017 PLoS One. 12 -
Lou, Z. ; Xie, Q. ; Shen, J.H. ; Lee, C.C. Does supply chain finance (SCF) alleviate funding constraints of SMEs? Evidence from China. 2024 Res. Int. Bus. Financ.. 67 -
- Lu, Q. ; Sun, S. ; Duan, H. ; Wang, S. Analysis and forecasting of crude oil price based on the variable selection-LSTM integrated model. 2021 Energy Inform.. 4 1-20
Paper not yet in RePEc: Add citation now
Maehashi, K. ; Shintani, M. Macroeconomic forecasting using factor models and machine learning: an application to Japan. 2020 J. Jpn. Int. Econ.. 58 -
- Medeiros, M.C. ; Mendes, E.F. ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors. 2016 J. Econ.. 191 255-271
Paper not yet in RePEc: Add citation now
Miao, H. ; Ramchander, S. ; Wang, T. ; Yang, D. Influential factors in crude oil price forecasting. 2017 Energy Econ.. 68 77-88
- Muhammadullah, S. ; Urooj, A. ; Mengal, M.H. ; Khan, S.A. ; Khalaj, F. Cross-sectional analysis of impulse Indicator saturation method for outlier detection estimated via regularization techniques with application of COVID-19 data. 2022 Comput. Math. Methods Med.. -
Paper not yet in RePEc: Add citation now
Niu, H. Correlations between crude oil and stocks prices of renewable energy and technology companies: a multiscale time-dependent analysis. 2021 Energy. 221 -
Pesaran, M.H. ; Timmermann, A. Testing dependence among serially correlated multicategory variables. 2009 J. Am. Stat. Assoc.. 104 325-337
Pönkä, H. ; Zheng, Y. The role of oil prices on the Russian business cycle. 2019 Res. Int. Bus. Financ.. 50 70-78
Reboredo, J.C. ; Rivera-Castro, M.A. ; Ugolini, A. Wavelet-based test of co-movement and causality between oil and renewable energy stock prices. 2017 Energy Econ.. 61 241-252
Rossi, B. ; Inoue, A. Out-of-sample forecast tests robust to the choice of window size. 2012 J. Bus. Econ. Stat.. 30 432-453
Safari, A. ; Davallou, M. Oil price forecasting using a hybrid model. 2018 Energy. 148 49-58
Smeekes, S. ; Wijler, E. Macroeconomic forecasting using penalized regression methods. 2018 Int. J. Forecast.. 34 408-430
Sun, Q. ; Zhou, W.X. ; Fan, J. Adaptive huber regression. 2020 J. Am. Stat. Assoc.. 115 254-265
Tang, L. ; Dai, W. ; Yu, L. ; Wang, S. A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting. 2015 Int. J. Inf. Technol. Decis. Mak.. 14 141-169
- Tang, L. ; Wu, Y. ; Yu, L. A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting. 2018 Appl. Soft Comput.. 70 1097-1108
Paper not yet in RePEc: Add citation now
- Wang, E.Z. ; Lee, C.C. The impact of commercial bank branch expansion on energy efficiency: Micro evidence from China. 2023 China Econ. Rev.. 80 -
Paper not yet in RePEc: Add citation now
Wang, Y. ; Liu, L. ; Wu, C. Forecasting commodity prices out-of-sample: can technical indicators help?. 2020 Int. J. Forecast.. 36 666-683
Wu, Y.X. ; Wu, Q.B. ; Zhu, J.Q. Improved EEMD-based crude oil price forecasting using LSTM networks. 2019 Physica A. 516 114-124
- Xie, W. ; Yu, L. ; Xu, S. ; Wang, S. A new method for crude oil price forecasting based on support vector machines. Lecture Notes in Computer Science, 3994, 444–451. 2006 En : Conference: Computational Science - ICCS 2006, 6th International Conference, Reading, UK, May 28–31, 2006, Proceedings, Part IV. :
Paper not yet in RePEc: Add citation now
Xing, L.M. ; Zhang, Y.J. Forecasting crude oil prices with shrinkage methods: can nonconvex penalty and Huber loss help?. 2022 Energy Econ.. 110 -
Yahya, F. ; Lee, C.C. Disentangling the asymmetric effect of financialization on green output gap. 2023 Energy Econ.. 125 -
Yao, C.Z. ; Mo, Y.N. ; Zhang, Z.K. A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis. 2021 North Am. J. Econ. Fin.. 58 101520-
Yu, L. ; Wang, S. ; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. 2008 Energy Econ.. 30 2623-2635
Yu, L. ; Zhao, Y. ; Tang, L. A compressed sensing based AI learning paradigm for crude oil price forecasting. 2014 Energy Econ.. 46 236-245
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. 2010 Ann. Stat.. 38 894-942
Paper not yet in RePEc: Add citation now
Zhang, Y. ; Ma, F. ; Shi, B. ; Huang, D. Forecasting the prices of crude oil: an iterated combination approach. 2018 Energy Econ.. 70 472-483
Zhang, Y. ; Ma, F. ; Wang, Y. Forecasting crude oil prices with a large set of predictors: can LASSO select powerful predictors?. 2019 J. Empir. Financ.. 54 97-117
Zhang, Y. ; Wei, Y. ; Zhang, Y. ; Jin, D. Forecasting oil price volatility: forecast combination versus shrinkage method. 2019 Energy Econ.. 80 423-433
Zhang, Y.J. ; Wang, J.L. Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models. 2019 Energy Econ.. 78 192-201
Zhang, Y.J. ; Zhang, H. Volatility forecasting of crude oil market: which structural change based GARCH models have better performance?. 2023 Energy J.. 44 -
- Zhao, E. ; Sun, S. ; Wang, S. New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight. 2022 Data Science and Management. 5 84-95
Paper not yet in RePEc: Add citation now
Zheng, B. ; Zhang, Y.W. ; Qu, F. ; Geng, Y. ; Yu, H. Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets?—a wavelet-based BEKK-GARCH-X approach. 2022 Energy. 251 -
Zou, H. ; Hastie, T. Regularization and variable selection via the elastic net. 2005 J. R. Stat. Soc. Ser. B Stat Methodol.. 67 301-320
- Zou, H. ; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. 2009 Ann. Stat.. 37 1733-
Paper not yet in RePEc: Add citation now