create a website

Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price. (2024). Wang, Xiaokang ; Huang, Wenyang ; Zhao, Jianyu.
In: Energy Economics.
RePEc:eee:eneeco:v:132:y:2024:i:c:s0140988324001671.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 134

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Natural Gas Futures Price Prediction Based on Variational Mode Decomposition–Gated Recurrent Unit/Autoencoder/Multilayer Perceptron–Random Forest Hybrid Model. (2025). Yu, Haisheng ; Song, Shenhui.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:6:p:2492-:d:1610559.

    Full description at Econpapers || Download paper

  2. Navigating Energy and Financial Markets: A Review of Technical Analysis Used and Further Investigation from Various Perspectives. (2024). Ni, Yensen.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:12:p:2942-:d:1415183.

    Full description at Econpapers || Download paper

  3. Identifying price bubbles in global carbon markets: Evidence from the SADF test, GSADF test and LPPLS method. (2024). Wang, Yizhi ; Huang, Wenyang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003347.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aatola, P. ; Ollikainen, M. ; Toppinen, A. Price determination in the EU ETS market: theory and econometric analysis with market fundamentals. 2013 Energy Econ.. 36 380-395

  2. Abrell, J. ; Ndoye, F.A. ; Zachmann, G. Assessing the impact of the EU ETS using firm level data. Bruegel working paper. 2011 :

  3. Alberola, E. ; Chevallier, J. ; Ch’eze, B. Price drivers and structural breaks in European carbon prices 2005–07. 2008 Energy Policy. 36 787-797

  4. Batten, J.A. ; Maddox, G.E. ; Young, M.R. Does weather, or energy prices, affect carbon prices?. 2020 Energy Econ.. 105016 -
    Paper not yet in RePEc: Add citation now
  5. Bayer, P. ; Aklin, M. The European Union emissions trading system reduced CO2 emissions despite low prices. 2020 Proc. Natl. Acad. Sci.. 117 8804-8812
    Paper not yet in RePEc: Add citation now
  6. Benz, E. ; Trück, S. Modeling the price dynamics of CO2 emission allowances. 2009 Energy Econ.. 31 4-15

  7. Bruninx, K. ; Ovaere, M. ; Delarue, E. The long-term impact of the market stability reserve on the EU emission trading system. 2020 Energy Econ.. 89 -

  8. Byun, S.J. ; Cho, H. Forecasting carbon futures volatility using GARCH models with energy volatilities. 2013 Energy Econ.. 40 207-221

  9. Caginalp, G. ; Laurent, H. The predictive power of price patterns. 1998 Appl. Math. Finan.. 5 181-205
    Paper not yet in RePEc: Add citation now
  10. Cagliero, L. ; Fior, J. ; Garza, P. Shortlisting machine learning-based stock trading recommendations using candlestick pattern recognition. 2023 Expert Syst. Appl.. 216 -
    Paper not yet in RePEc: Add citation now
  11. Chen, J. ; Wen, Y. ; Nanehkaran, Y.A. Machine learning techniques for stock price prediction and graphic signal recognition. 2023 Eng. Appl. Artif. Intell.. 121 -
    Paper not yet in RePEc: Add citation now
  12. Chen, J.H. ; Tsai, Y.C. Encoding candlesticks as images for pattern classification using convolutional neural networks. 2020 Finan. Innov.. 6 1-19

  13. Chen, S. ; Bao, S. ; Zhou, Y. The predictive power of Japanese candlestick charting in Chinese stock market. 2016 Physica A: Stat. Mech. Appl.. 457 148-165

  14. Chevallier, J. A model of carbon price interactions with macroeconomic and energy dynamics. 2011 Energy Econ.. 33 1295-1312

  15. Chevallier, J. Carbon futures and macroeconomic risk factors: a view from the EU ETS. 2009 Energy Econ.. 31 614-625

  16. Chevallier, J. Volatility forecasting of carbon prices using factor models. 2010 Econ. Bull.. 30 1642-1660

  17. Chevallier, J. ; Sévi, B. On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting. 2011 Ann. Finance. 7 1-29

  18. Convery, F.J. Origins and development of the EU ETS. 2009 Environ. Resour. Econ.. 43 391-412

  19. Cooper, M.J. ; Cliff, M.T. ; Gulen, H. Return differences between trading and non-trading hours: Like night and day. Available at SSRN 1004081. 2008 :
    Paper not yet in RePEc: Add citation now
  20. Creti, A. ; Joets, M. Multiple bubbles in the European union emission trading scheme. 2017 Energy Policy. 107 119-130

  21. Creti, A. ; Jouvet, P.A. ; Mignon, V. Carbon price drivers: Phase I versus phase II equilibrium?. 2012 Energy Econ.. 34 327-334

  22. Dai, X. ; Xiao, L. ; Wang, Q. Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS. 2021 Energy Policy. 156 -

  23. De Perthuis, C. ; Trotignon, R. Governance of CO2 markets: lessons from the EU ETS. 2014 Energy Policy. 75 100-106

  24. Dhamija, A.K. ; Yadav, S.S. ; Jain, P.K. Forecasting volatility of carbon under EU ETS: a multi-phase study. 2017 Environ. Econ. Policy Stud.. 19 299-335

  25. Dolan, R.J. Emotion, cognition, and behavior. 2002 Science. 298 1191-1194
    Paper not yet in RePEc: Add citation now
  26. Dunis, C.L. ; Laws, J. ; Rudy, J. Profitable mean reversion after large price drops: a story of day and night in the S&P 500, 400 MidCap and 600 SmallCap indices. 2011 J. Asset Manag.. 12 185-202

  27. Ellerman, A.D. ; Marcantonini, C. ; Zaklan, A. The European Union emissions trading system: ten years and counting. 2016 Rev. Environ. Econ. Policy. 10 89-107

  28. Fan, X. ; Li, S. ; Tian, L. Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model. 2015 Expert Syst. Appl.. 42 3945-3952
    Paper not yet in RePEc: Add citation now
  29. Flachsland, C. ; Pahle, M. ; Burtraw, D. How to avoid history repeating itself: the case for an EU emissions trading system (EU ETS) price floor revisited. 2020 Clim. Pol.. 20 133-142

  30. García-Martos, C. ; Rodríguez, J. ; Sánchez, M.J. Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities. 2013 Appl. Energy. 101 363-375
    Paper not yet in RePEc: Add citation now
  31. García, A. ; Jaramillo-Morán, M.A. Short-term European Union allowance price forecasting with artificial neural networks. 2020 Entrepr. Sustain. Issues. 8 261-

  32. Gong, X. ; Li, M. ; Guan, K. Climate change attention and carbon futures return prediction. 2023 J. Futur. Mark.. 43 1261-1288

  33. Goo, Y. ; Chen, D. ; Chang, Y. The application of Japanese candlestick trading strategies in Taiwan. 2007 Invest. Manag. Finan. Innov.. 4 49-79
    Paper not yet in RePEc: Add citation now
  34. Graves, A. ; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTMand other neural network architectures. 2005 Neural Netw.. 18 602-610
    Paper not yet in RePEc: Add citation now
  35. Gu, L. ; Peng, Y. ; Vigne, S.A. ; Wang, Y. Hidden costs of non-green performance? The impact of air pollution awareness on loan rates for Chinese firms. 2023 J. Econ. Behav. Organ.. 213 233-250

  36. Guðbrandsdóttir, H.N. ; Haraldsson, H.Ó. Predicting the price of EU ETS carbon credits. 2011 Syst. Eng. Proc.. 1 481-489
    Paper not yet in RePEc: Add citation now
  37. Hammoudeh, S. ; Nguyen, D.K. ; Sousa, R.M. What explain the short-term dynamics of the prices of CO2 emissions?. 2014 Energy Econ.. 46 22-135

  38. Hepburn, C. ; Grubb, M. ; Neuhoff, K. Auctioning of EU ETS phase II allowances: how and why?. 2006 Clim. Pol.. 6 137-160

  39. Hickmann, T. Science–policy interaction in international environmental politics: an analysis of the ozone regime and the climate regime. 2014 Environ. Econ. Policy Stud.. 16 21-44

  40. Hintermann, B. Allowance price drivers in the first phase of the EU ETS. 2010 J. Environ. Econ. Manag.. 59 43-56

  41. Hintermann, B. ; Peterson, S. ; Rickels, W. Price and market behavior in phase II of the EU ETS: a review of the literature. 2016 Rev. Environ. Econ. Policy. 10 108-128

  42. Hoseinzade, E. ; Haratizadeh, S. CNNpred: CNN-based stock market prediction using a diverse set of variables. 2019 Expert Syst. Appl.. 129 273-285
    Paper not yet in RePEc: Add citation now
  43. Hu, C. ; He, L.T. An application of interval methods to stock market forecasting. 2007 Reliable Computing. 13 423-434
    Paper not yet in RePEc: Add citation now
  44. Hu, J. ; Crijns-Graus, W. ; Lam, L. Ex-ante evaluation of EU ETS during 2013–2030: EU-internal abatement. 2015 Energy Policy. 77 152-163

  45. Huang, T. ; Saporta, G. ; Wang, H. A robust spatial autoregressive scalar on function regression with t distribution. 2021 ADAC. 15 57-81

  46. Huang, W. ; Gao, T. ; Hao, Y. Transformer-based forecasting for intraday trading in the Shanghai crude oil market: analyzing open-high-low-close prices. 2023 Energy Econ.. 127 -

  47. Huang, W. ; Wang, H. ; Qin, H. Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method. 2022 Energy Econ.. 110 -

  48. Huang, W. ; Wang, H. ; Wang, S. A pseudo principal component analysis method for multi-dimensional open-high-low-close data in candlestick chart. 2022 Commun. Stat. Theory Methods. 1-27
    Paper not yet in RePEc: Add citation now
  49. Huang, W. ; Wang, H. ; Wang, S. A structural VAR and VECM modeling method for open-high-low-close data contained in candlestick chart. 2024 Financ. Innov.. 10 97-
    Paper not yet in RePEc: Add citation now
  50. Huang, W. ; Wang, H. ; Wei, Y. Complex network analysis of global stock market co-movement during the COVID-19 pandemic based on intraday open-high-low-close data. 2024 Financ. Innov.. 10 7-
    Paper not yet in RePEc: Add citation now
  51. Huang, W. ; Wang, H. ; Wei, Y. Identifying the determinants of European carbon allowances prices: a novel robust partial least squares method for open-high-low-close data. 2023 Int. Rev. Financ. Anal.. 90 -

  52. Huang, Y. ; Dai, X. ; Wang, Q. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. 2021 Appl. Energy. 285 -

  53. Hung, C.C. ; Chen, Y.J. DPP: deep predictor for price movement from candlestick charts. 2021 PLoS One. 16 -

  54. Hung, C.C. ; Chen, Y.J. ; Guo, S.J. Predicting the price movement from candlestick charts: a CNN-based approach. 2020 Int. J. Ad Hoc Ubiquitous Comput.. 34 111-120
    Paper not yet in RePEc: Add citation now
  55. Jeszke, R. ; Lizak, S. Reflections on the mechanisms to protect against formation of price bubble in the EU ETS market. 2021 Environ. Protect. Nat. Resourc.. 32 8-17
    Paper not yet in RePEc: Add citation now
  56. Ji, L. ; Zou, Y. ; He, K. Carbon futures price forecasting based with ARIMA-CNN-LSTM model. 2019 Proc. Comput. Sci.. 162 33-38
    Paper not yet in RePEc: Add citation now
  57. Jiang, J. ; Kelly, B.T. ; Xiu, D. (Re-) Imag (in) ing price trends. 2023 The Journal of Finance. 78 3193-3249
    Paper not yet in RePEc: Add citation now
  58. Kelly, M.A. ; Clark, S.P. Returns in trading versus non-trading hours: the difference is day and night. 2011 J. Asset Manag.. 12 132-145

  59. Kim, J. ; Park, Y.J. ; Ryu, D. Stochastic volatility of the futures prices of emission allowances: a Bayesian approach. 2017 Physica A: Stat. Mech. Appl.. 465 714-724

  60. Kim, T. ; Kim, H.Y. Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. 2019 PLoS One. 14 -

  61. Koch, N. ; Fuss, S. ; Grosjean, G. ; Edenhofer, O. Causes of the EU ETS price drop: recession, CDM, renewable policies or a bit of everything?—new evidence. 2014 Energy Policy. 73 676-685

  62. Kossoy, A. ; Guigon, P. State and trends of the carbon market. 2012 :

  63. Laing, T. ; Sato, M. ; Grubb, M. Assessing the Effectiveness of the EU Emissions Trading System. 2013 Grantham Research Institute on Climate Change and the Environment: London

  64. Lepone, A. ; Rahman, R.T. ; Yang, J.Y. The Impact of European Union Emissions Trading Scheme (EU ETS) National Allocation Plans (NAP) on carbon markets. 2011 Low Carbon Econ.. 2 71-
    Paper not yet in RePEc: Add citation now
  65. Li, C.Y. ; Chen, S.N. ; Lin, S.K. Pricing derivatives with modeling CO2 emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium. 2016 Eur. J. Financ.. 22 887-908

  66. Li, D. ; Li, Y. ; Wang, C. Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks. 2023 Appl. Energy. 331 -

  67. Li, H. ; Jin, F. ; Sun, S. A new secondary decomposition ensemble learning approach for carbon price forecasting. 2021 Knowl.-Based Syst.. 214 -
    Paper not yet in RePEc: Add citation now
  68. Liang, M. ; Wu, S. ; Wang, X. A stock time series forecasting approach incorporating candlestick patterns and sequence similarity. 2022 Expert Syst. Appl.. 205 -
    Paper not yet in RePEc: Add citation now
  69. Liu, H. ; Shen, L. Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network. 2020 Carbon Manag.. 11 25-37
    Paper not yet in RePEc: Add citation now
  70. Liu, X. ; An, H. ; Wang, L. An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms. 2017 Appl. Energy. 185 1778-1787

  71. Lu, W. ; Li, J. ; Wang, J. A CNN-BiLSTM-AM method for stock price prediction. 2021 Neural Comput. & Applic.. 33 4741-4753
    Paper not yet in RePEc: Add citation now
  72. Lu, W. ; Wang, W.J. An investigation into the evolved relationship between spot and futures in the European Union emission trading scheme. 2011 Int. J. Green Econ.. 5 133-142
    Paper not yet in RePEc: Add citation now
  73. Lucia, J.J. ; Mansanet-Bataller, M. ; Pardo, Á. Speculative and hedging activities in the European carbon market. 2015 Energy Policy. 82 342-351

  74. Lutz, B.J. ; Pigorsch, U. ; Rotfuß, W. Nonlinearity in cap-and-trade systems: the EUA price and its fundamentals. 2013 Energy Econ.. 40 222-232

  75. Lv, T. ; Hao, Y. Further analysis of candlestick Patterns’ predictive power. 2017 En : Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Changsha, China, September 22–24, 2017, Proceedings, Part I. Springer Singapore:
    Paper not yet in RePEc: Add citation now
  76. Ma, F. ; Cao, J. ; Wang, Y. Dissecting climate change risk and financial market instability: Implications for ecological risk management. 2023 Risk Analysis, 1-27. -
    Paper not yet in RePEc: Add citation now
  77. Meadows, D. ; Vis, P. ; Zapfel, P. The EU emissions trading system. 2019 En : Towards a Climate-Neutral Europe. :
    Paper not yet in RePEc: Add citation now
  78. Mirzaee Ghazani, M. ; Jafari, M.A. The efficiency of CO2 market in the phase III EU ETS: analyzing in the context of a dynamic approach. 2021 Environ. Sci. Pollut. Res.. 28 61080-61095
    Paper not yet in RePEc: Add citation now
  79. Nadirgil, O. Carbon price prediction using multiple hybrid machine learning models optimized by genetic algorithm. 2023 J. Environ. Manag.. 342 -
    Paper not yet in RePEc: Add citation now
  80. Needham, T. A visual explanation of Jensen’s inequality. 1993 Am. Math. Mon.. 100 768-771
    Paper not yet in RePEc: Add citation now
  81. Neuhoff, K. ; Åhman, M. ; Betz, R. Implications of announced phase II national allocation plans for the EU ETS. 2006 Clim. Pol.. 6 411-422

  82. Nison, S. Beyond Candlesticks: New Japanese Charting Techniques Revealed. 1994 John Wiley & Sons:
    Paper not yet in RePEc: Add citation now
  83. Nison, S. Japanese Candlestick Charting Techniques: A Contemporary Guide to the Ancient Investment Techniques of the Far East. 2001 Penguin:
    Paper not yet in RePEc: Add citation now
  84. Pan, D. ; Zhang, C. ; Zhu, D. Carbon price forecasting based on news text mining considering investor attention. 2023 Environ. Sci. Pollut. Res.. 30 28704-28717
    Paper not yet in RePEc: Add citation now
  85. Paolella, M.S. ; Taschini, L. An econometric analysis of emission allowance prices. 2008 J. Bank. Financ.. 32 2022-2032

  86. Pawłowski, P. Carbon Emissions Futures Price Forecasting with Random Forest. 2021 Rynek Energii:
    Paper not yet in RePEc: Add citation now
  87. Perino, G. New EU ETS phase 4 rules temporarily puncture waterbed. 2018 Nat. Clim. Chang.. 8 262-264

  88. Qin, Q. ; Huang, Z. ; Zhou, Z. Hodrick–Prescott filter-based hybrid ARIMA–SLFNs model with residual decomposition scheme for carbon price forecasting. 2022 Appl. Soft Comput.. 119 -
    Paper not yet in RePEc: Add citation now
  89. Rannou, Y. ; Boutabba, M.A. ; Barneto, P. Are Green Bond and Carbon Markets in Europe complements or substitutes? Insights from the activity of power firms. 2021 Energy Econ.. 104 -

  90. Reboredo, J.C. Modeling EU allowances and oil market interdependence. Implications for portfolio management. 2013 Energy Econ.. 36 471-480

  91. Rostamian, A. ; O’Hara, J.G. Event prediction within directional change framework using a CNN-LSTM model. 2022 Neural Comput. & Applic.. 34 17193-17205
    Paper not yet in RePEc: Add citation now
  92. Santur, Y. Candlestick chart based trading system using ensemble learning for financial assets. 2022 Sigma J. Eng. Nat. Sci.. 40 370-379
    Paper not yet in RePEc: Add citation now
  93. Sartor, O. ; Pallière, C. ; Lecourt, S. Benchmark-based allocations in EU ETS Phase 3: an early assessment. 2014 Clim. Pol.. 14 507-524

  94. Sato, M. ; Rafaty, R. ; Calel, R. Allocation, allocation, allocation! The political economy of the development of the European Union emissions trading system. 2022 Wiley Interdiscip. Rev. Clim. Chang.. 13 -

  95. Selvamuthu, D. ; Kumar, V. ; Mishra, A. Indian stock market prediction using artificial neural networks on tick data. 2019 Finan. Innov.. 5 1-12

  96. Sheng, C. ; Wang, G. ; Geng, Y. The correlation analysis of futures pricing mechanism in China’s carbon financial market. 2020 Sustainability. 12 7317-

  97. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. 2020 Physica D: Nonlinear Phenomena. 404 -
    Paper not yet in RePEc: Add citation now
  98. Shin, H.G. ; Ra, I. ; Choi, Y.H. A deep multimodal reinforcement learning system combined with CNN and LSTM for stock trading. 2019 En : International Conference on Information and Communication Technology Convergence (ICTC). IEEE:
    Paper not yet in RePEc: Add citation now
  99. Skjærseth, J.B. ; Wettestad, J. The origin, evolution and consequences of the EU emissions trading system. 2009 Glob. Environ. Polit.. 9 101-122

  100. Sun, G.Q. ; Che, T. ; Wei, Z.N. A carbon price forecasting model based on variational mode decomposition and spiking neural networks. 2016 Energies. 9 54-

  101. Tan, X.P. ; Wang, X.Y. Dependence changes between the carbon price and its fundamentals: a quantile regression approach. 2017 Appl. Energy. 190 306-325

  102. Tsai, C.F. ; Quan, Z.Y. Stock prediction by searching for similarities in candlestick charts. 2014 ACM Trans. Manag. Inf. Syst.. 5 1-21
    Paper not yet in RePEc: Add citation now
  103. Tsai, M.T. ; Kuo, Y.T. Application of radial basis function neural network for carbon price forecasting. 2014 Appl. Mech. Mater.. 590 683-687
    Paper not yet in RePEc: Add citation now
  104. Varadharajan, P. ; Vikkraman, P. Effectiveness of technical analysis using candlestick chart for selection of equity stock in Indian capital market. 2011 J. Contemp. Manag. Res.. 5 -
    Paper not yet in RePEc: Add citation now
  105. Viteva, S. ; Veld-Merkoulova, Y.V. ; Campbell, K. The forecasting accuracy of implied volatility from ECX carbon options. 2014 Energy Econ.. 45 475-484

  106. Wang, H. ; Huang, T. ; Wang, S. A flexible spatial autoregressive modelling framework for mixed covariates of multiple data types. 2021 Commun. Stat. Simul. Comput.. 50 3498-3515
    Paper not yet in RePEc: Add citation now
  107. Wang, H. ; Wang, J. ; Cao, L. A stock closing price prediction model based on CNN-BiSLSTM. 2021 Complexity. 1-12
    Paper not yet in RePEc: Add citation now
  108. Wang, M. ; Zhu, M. ; Tian, L. A novel framework for carbon price forecasting with uncertainties. 2022 Energy Econ.. 106162 -

  109. Wang, Y. Volatility spillovers across NFTs news attention and financial markets. 2022 Int. Rev. Financ. Anal.. 83 102313-

  110. Wang, Y. ; Lucey, B.M. ; Vigne, S.A. The effects of central bank digital currencies news on financial markets. 2022 Technol. Forecast. Soc. Change.. 180 121715-
    Paper not yet in RePEc: Add citation now
  111. Wang, Y. ; Wei, Y. ; Lucey, B.M. Return spillover analysis across central bank digital currency attention and cryptocurrency markets. 2023 Res. Int. Bus. Finance. 64 101896-

  112. Wei, Y. ; Gong, P. ; Zhang, J. Exploring public opinions on climate change policy in “Big Data Era”—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter. 2021 Energy Policy. 158 -

  113. Wei, Y. ; Li, Y. ; Wang, Z. Multiple price bubbles in global major emission trading schemes: Evidence from European Union, New Zealand, South Korea and China. 2022 Energy Econ.. 113 -

  114. Wei, Y. ; Zhang, J. ; Bai, L. Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time-and frequency-domain evidence based on TVP-VAR model. 2023 Renew. Energy. 202 289-309

  115. Wu, J.M.T. ; Li, Z. ; Herencsar, N. A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. 2021 Multimedia Systems. 1-20
    Paper not yet in RePEc: Add citation now
  116. Wu, M. ; Li, K.X. ; Xiao, Y. Carbon emission trading scheme in the shipping sector: drivers, challenges, and impacts. 2022 Mar. Policy. 138 -
    Paper not yet in RePEc: Add citation now
  117. Xu, H. ; Wang, M. ; Jiang, S. Carbon price forecasting with complex network and extreme learning machine. 2020 Physica A: Stat. Mech. Appl.. 545 -

  118. Yu, Y. ; Si, X. ; Hu, C. A review of recurrent neural networks: LSTM cells and network architectures. 2019 Neural Comput.. 31 1235-1270
    Paper not yet in RePEc: Add citation now
  119. Yun, P. ; Huang, X. ; Wu, Y. Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN-LSTM. 2023 Energy Sci. Eng.. 11 79-96
    Paper not yet in RePEc: Add citation now
  120. Yun, P. ; Zhang, C. ; Wu, Y. Forecasting carbon dioxide price using a time-varying high-order moment hybrid model of NAGARCHSK and gated recurrent unit network. 2022 Int. J. Environ. Res. Public Health. 19 899-

  121. Zhang, D. ; Tang, P. Forecasting European Union allowances futures: the role of technical indicators. 2023 Energy. 270 -

  122. Zhang, D. ; Wang, C. ; Wang, Y. Unveiling the critical nexus: Volatility of crude oil future prices and trade partner’s cash holding behavior in the face of the Russia–Ukraine conflict. 2024 Energy Econ.. 107413 -

  123. Zhang, F. ; Wen, N. Carbon price forecasting: a novel deep learning approach. 2022 Environ. Sci. Pollut. Res.. 29 54782-54795
    Paper not yet in RePEc: Add citation now
  124. Zhang, F. ; Xia, Y. Carbon price prediction models based on online news information analytics. 2022 Financ. Res. Lett.. 46 -

  125. Zhang, K. ; Cao, H. ; Thé, J. A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms. 2022 Appl. Energy. 306 -

  126. Zhang, K. ; Yang, X. ; Wang, T. Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms. 2023 J. Clean. Prod.. 136959 -
    Paper not yet in RePEc: Add citation now
  127. Zhang, T. ; Tang, Z. Multi-step carbon price forecasting based on a new quadratic decomposition ensemble learning approach. 2023 Front. Energy Res.. 10 -
    Paper not yet in RePEc: Add citation now
  128. Zhang, W. ; Wu, Z. ; Zeng, X. An ensemble dynamic self-learning model for multiscale carbon price forecasting. 2023 Energy. 263 -

  129. Zhang, X. ; Li, Z. ; Zhao, Y. Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting. 2023 Ann. Oper. Res.. 1-29
    Paper not yet in RePEc: Add citation now
  130. Zhao, Q. ; Wang, H. ; Lu, S. MLDQ feature embedding and regression modeling for distribution valued data. 2022 Inf. Sci.. 609 121-152
    Paper not yet in RePEc: Add citation now
  131. Zheng, Z. ; Xiao, R. ; Shi, H. Statistical regularities of carbon emission trading market: evidence from European Union allowances. 2015 Physica A: Stat. Mech. Appl.. 426 9-15

  132. Zhu, B. ; Wei, Y. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. 2013 Omega. 41 517-524

  133. Zhu, B. ; Ye, S. ; Wang, P. Forecasting carbon price using a multi-objective least squares support vector machine with mixture kernels. 2022 J. Forecast.. 41 100-117

  134. Zhu, B.Z. ; Han, D. ; Wang, P. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. 2017 Appl. Energy. 191 521e530-

Cocites

Documents in RePEc which have cited the same bibliography

  1. The impact of artificial intelligence on carbon market in China: Evidence from quantile-on-quantile regression approach. (2025). Zhao, Xiangyu ; Hu, Yanhui ; Jiang, Wei.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:212:y:2025:i:c:s0040162525000046.

    Full description at Econpapers || Download paper

  2. Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm. (2019). Li, Yushuo ; Huo, Xuejing ; Xu, Xiaolei ; Zhou, Jianguo.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:5:p:950-:d:213213.

    Full description at Econpapers || Download paper

  3. Disentangling the drivers of carbon prices in Chinas ETS pilots — An EEMD approach. (2019). LIU, YU ; He, Gang ; Tan, Xiujie ; Xu, Jia.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:139:y:2019:i:c:p:1-9.

    Full description at Econpapers || Download paper

  4. Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition. (2019). Ye, Shunxin ; Yuan, Lili ; Zhu, Bangzhu.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:517:y:2019:i:c:p:392-399.

    Full description at Econpapers || Download paper

  5. Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors. (2019). Zhao, Xin ; Kang, Wanglin ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:171:y:2019:i:c:p:69-76.

    Full description at Econpapers || Download paper

  6. A multiscale analysis for carbon price drivers. (2019). Wei, Yi-Ming ; Ye, Shunxin ; Xie, Rui ; Wang, Ping ; He, Kaijian ; Han, Dong ; Zhu, Bangzhu.
    In: Energy Economics.
    RePEc:eee:eneeco:v:78:y:2019:i:c:p:202-216.

    Full description at Econpapers || Download paper

  7. The erratic behaviour of the EU ETS on the path towards consolidation and price stability. (2018). Huete-Morales, Maria-Dolores ; Galan-Valdivieso, Federico ; Villar-Rubio, Elena.
    In: International Environmental Agreements: Politics, Law and Economics.
    RePEc:spr:ieaple:v:18:y:2018:i:5:d:10.1007_s10784-018-9411-3.

    Full description at Econpapers || Download paper

  8. How Will Policies of China’s CO 2 ETS Affect its Carbon Price: Evidence from Chinese Pilot Regions. (2018). Yang, Baochen ; Gou, Zehao ; Su, Yunpeng ; Man, Jiacheng ; Liu, Chuanze.
    In: Sustainability.
    RePEc:gam:jsusta:v:10:y:2018:i:3:p:605-:d:133585.

    Full description at Econpapers || Download paper

  9. The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO 2 in a Developed PV Market. (2018). Dadamo, Idiano.
    In: Social Sciences.
    RePEc:gam:jscscx:v:7:y:2018:i:9:p:148-:d:166953.

    Full description at Econpapers || Download paper

  10. Modelling the Dynamics of Fuel and EU Allowance Prices during Phase 3 of the EU ETS. (2018). Olmo, Jose ; Carnero, M. Angeles ; Pascual, Lorenzo.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:11:p:3148-:d:182707.

    Full description at Econpapers || Download paper

  11. The dynamic spillover between carbon and energy markets: New evidence. (2018). Wang, Yudong ; Guo, Zhuangyue.
    In: Energy.
    RePEc:eee:energy:v:149:y:2018:i:c:p:24-33.

    Full description at Econpapers || Download paper

  12. Explaining the interplay of three markets: Green certificates, carbon emissions and electricity. (2018). Jaraite-Kažukauskė, Jūratė ; Schusser, Sandra.
    In: Energy Economics.
    RePEc:eee:eneeco:v:71:y:2018:i:c:p:1-13.

    Full description at Econpapers || Download paper

  13. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. (2018). Zhao, Xin ; Kang, Wanglin ; Han, Meng ; Ding, Lili.
    In: Applied Energy.
    RePEc:eee:appene:v:216:y:2018:i:c:p:132-141.

    Full description at Econpapers || Download paper

  14. California´s Carbon Market and Energy Prices: A Wavelet Analysis. (2017). Sousa, Rita ; Aguiar-Conraria, Luís ; Soares, Maria Joana.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:13/2017.

    Full description at Econpapers || Download paper

  15. Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models. (2017). GUPTA, RANGAN ; Lux, Thomas ; Segnon, Mawuli.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:69:y:2017:i:c:p:692-704.

    Full description at Econpapers || Download paper

  16. Dynamic multiscale interactions between European carbon and electricity markets during 2005–2016. (2017). Wei, Yi-Ming ; Chevallier, Julien ; Han, Dong ; Zhu, Bangzhu.
    In: Energy Policy.
    RePEc:eee:enepol:v:107:y:2017:i:c:p:309-322.

    Full description at Econpapers || Download paper

  17. Multiple bubbles in the European Union Emission Trading Scheme. (2017). Joëts, Marc ; Joets, Marc ; Creti, Anna.
    In: Energy Policy.
    RePEc:eee:enepol:v:107:y:2017:i:c:p:119-130.

    Full description at Econpapers || Download paper

  18. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. (2017). Zhang, Yue-Jun ; Peng, Yu-Lu ; Ma, Chao-Qun ; Shen, BO.
    In: Energy Policy.
    RePEc:eee:enepol:v:100:y:2017:i:c:p:18-28.

    Full description at Econpapers || Download paper

  19. Can energy commodity futures add to the value of carbon assets?. (2017). Roubaud, David ; Bouri, Elie ; Wen, Xiaoqian.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:62:y:2017:i:c:p:194-206.

    Full description at Econpapers || Download paper

  20. Dependence changes between the carbon price and its fundamentals: A quantile regression approach. (2017). Tan, Xue-Ping ; Wang, Xin-Yu.
    In: Applied Energy.
    RePEc:eee:appene:v:190:y:2017:i:c:p:306-325.

    Full description at Econpapers || Download paper

  21. An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms. (2017). Jia, Xiaoliang ; Liu, Xiaojia ; Wang, Lijun.
    In: Applied Energy.
    RePEc:eee:appene:v:185:y:2017:i:p2:p:1778-1787.

    Full description at Econpapers || Download paper

  22. The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark. (2017). Karanfil, Fatih ; Li, Yuanjing.
    In: The Energy Journal.
    RePEc:aen:journl:ej38-2-li.

    Full description at Econpapers || Download paper

  23. Pass-Through of CO2 Emission Costs to Hourly Electricity Prices in Germany. (2016). Hintermann, Beat.
    In: Journal of the Association of Environmental and Resource Economists.
    RePEc:ucp:jaerec:doi:10.1086/688486.

    Full description at Econpapers || Download paper

  24. The New Zealand Emissions Trading Scheme de-link from Kyoto: impacts on banking and prices. (2016). Kerr, Suzi ; Ormsby, Judd.
    In: Working Papers.
    RePEc:mtu:wpaper:16_13.

    Full description at Econpapers || Download paper

  25. Uncertainty and speculators in an auction for emissions permits. (2016). Haita-Falah, Corina.
    In: Journal of Regulatory Economics.
    RePEc:kap:regeco:v:49:y:2016:i:3:d:10.1007_s11149-016-9299-1.

    Full description at Econpapers || Download paper

  26. Research on carbon emission trading mechanisms: current status and future possibilities. (2016). Zhang, Yue-Jun.
    In: International Journal of Global Energy Issues.
    RePEc:ids:ijgeni:v:39:y:2016:i:1/2:p:89-107.

    Full description at Econpapers || Download paper

  27. Explaining the Interplay of Three Markets: Green Certificates, Carbon Emissions and Electricity. (2016). Jaraite-Kažukauskė, Jūratė ; Schusser, Sandra.
    In: CERE Working Papers.
    RePEc:hhs:slucer:2016_010.

    Full description at Econpapers || Download paper

  28. Role of carbon swap trading and energy prices in price correlations and volatilities between carbon markets. (2016). Kanamura, Takashi.
    In: Energy Economics.
    RePEc:eee:eneeco:v:54:y:2016:i:c:p:204-212.

    Full description at Econpapers || Download paper

  29. Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. (2016). Nguyen, Duc Khuong ; Demirer, Riza ; Balcilar, Mehmet ; Hammoudeh, Shawkat.
    In: Energy Economics.
    RePEc:eee:eneeco:v:54:y:2016:i:c:p:159-172.

    Full description at Econpapers || Download paper

  30. Pilot Analysis of the Behaviour of Companies Within the 3rd Trading Period of the EU ETS in the Czech Republic. (2015). Zimmermannova, Jarmila.
    In: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.
    RePEc:mup:actaun:actaun_2015063062213.

    Full description at Econpapers || Download paper

  31. Tradable Permits in Cost-Benefit Analysis. (2015). Johansson, Per-Olov.
    In: SSE Working Paper Series in Economics.
    RePEc:hhs:hastec:2015_003.

    Full description at Econpapers || Download paper

  32. Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach. (2015). Yu, Lean ; Wang, Shuai ; Tang, Ling ; Li, Jingjing.
    In: Energy Economics.
    RePEc:eee:eneeco:v:51:y:2015:i:c:p:300-311.

    Full description at Econpapers || Download paper

  33. Is carbon emissions trading profitable?. (2015). Sharma, Susan ; Narayan, Paresh.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:47:y:2015:i:c:p:84-92.

    Full description at Econpapers || Download paper

  34. Profitability Analysis for Biomethane: A Strategic Role in the Italian Transport Sector. (2015). Cermak, Petr ; Pokorny, Miroslav ; Martinu, Jiri ; Zimmermannova, Jarmila ; Lavrincik, Jan .
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2015-02-07.

    Full description at Econpapers || Download paper

  35. The Broker Simulation Model in the Emission Allowances Trading Area. (2015). Cermak, Petr ; Pokorny, Miroslav ; Martinu, Jiri ; Zimmermannova, Jarmila ; Lavrincik, Jan .
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2015-01-07.

    Full description at Econpapers || Download paper

  36. Electricity futures prices in an emissions constrained economy: Evidence from European power markets. (2015). Symeonidis, Lazaros ; Markellos, Raphael ; Daskalakis, George ; George, Lazaros Symeonidis .
    In: The Energy Journal.
    RePEc:aen:journl:ej36-3-daskalakis.

    Full description at Econpapers || Download paper

  37. Price and market behavior in Phase II of the EU ETS. (2014). Rickels, Wilfried ; Peterson, Sonja ; Hintermann, Beat.
    In: Kiel Working Papers.
    RePEc:zbw:ifwkwp:1962.

    Full description at Econpapers || Download paper

  38. Carbon and Energy Prices: Surfing the Wavelets of California. (2014). Sousa, Rita ; Aguiar-Conraria, Luís ; Soares, Maria Joana.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:19/2014.

    Full description at Econpapers || Download paper

  39. Carbon Financial Markets: a time-frequency analysis of CO2 price drivers. (2014). Sousa, Rita ; Aguiar-Conraria, Luís ; Soares, Maria Joana.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:03/2014.

    Full description at Econpapers || Download paper

  40. Dynamics of CO2 price drivers. (2014). Sousa, Rita ; Aguiar-Conraria, Luís.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:02/2014.

    Full description at Econpapers || Download paper

  41. Risk Spillovers across the Energy and Carbon Markets and Hedging Strategies for Carbon Risk. (2014). Hammoudeh, Shawkat ; Demirer, Rza ; Balclar, Mehmet .
    In: Working Papers.
    RePEc:ipg:wpaper:2014-552.

    Full description at Econpapers || Download paper

  42. Risk Spillovers across the Energy and Carbon Markets and Hedging Strategies for Carbon Risk. (2014). Nguyen, Duc Khuong ; Demirer, Riza ; Balcilar, Mehmet ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:emu:wpaper:15-10.pdf.

    Full description at Econpapers || Download paper

  43. Carbon financial markets: A time–frequency analysis of CO2 prices. (2014). Sousa, Rita ; Aguiar-Conraria, Luís ; Soares, Maria Joana.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:414:y:2014:i:c:p:118-127.

    Full description at Econpapers || Download paper

  44. Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence. (2014). Edenhofer, Ottmar ; Fuss, Sabine ; Koch, Nicolas ; Grosjean, Godefroy.
    In: Energy Policy.
    RePEc:eee:enepol:v:73:y:2014:i:c:p:676-685.

    Full description at Econpapers || Download paper

  45. What explain the short-term dynamics of the prices of CO2 emissions?. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: Energy Economics.
    RePEc:eee:eneeco:v:46:y:2014:i:c:p:122-135.

    Full description at Econpapers || Download paper

  46. Pass-through of CO2 Emission Costs to Hourly Electricity Prices in Germany. (2014). Hintermann, Beat.
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_4964.

    Full description at Econpapers || Download paper

  47. Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals. (2013). Rotfuß, Waldemar ; Lutz, Benjamin ; Pigorsch, Uta.
    In: ZEW Discussion Papers.
    RePEc:zbw:zewdip:13001r.

    Full description at Econpapers || Download paper

  48. Carbon content of electricity futures in Phase II of the EU ETS. (2013). Vollebergh, Herman R.J. ; Hintermann, Beat ; Fell, Harrison.
    In: Working Papers.
    RePEc:mns:wpaper:wp201306.

    Full description at Econpapers || Download paper

  49. Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals. (2013). Rotfuß, Waldemar ; Lutz, Benjamin ; Pigorsch, Uta.
    In: Energy Economics.
    RePEc:eee:eneeco:v:40:y:2013:i:c:p:222-232.

    Full description at Econpapers || Download paper

  50. Carbon Content of Electricity Futures in Phase II of the EU ETS. (2013). Vollebergh, Herman R.J. ; Hintermann, Beat ; Fell, Harrison ; Herman R. J. Vollebergh, .
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_4367.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-22 18:34:39 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.